Hyperfine Coupling to ¹³C-Cyanide in Electron Spin Resonance Spectra of

Pentacyanocobaltate(II) and Cobalt(II) Carbonic Anhydrase

By Stephen A. Cockle[†]

(Department of Biochemistry, University of Göteborg, Fack, S-402 20 Göteborg 5, Sweden, and School of Molecular Sciences, University of Sussex, Falmer, Brighton BN1 9QJ)

Summary ¹³C-Hyperfine coupling to the equatorial ligands of pentacyanocobaltate(II) was measured, leading to a structure for the low-spin cyanide complex of Co^{II} carbonic anhydrase.

ELECTRON SPIN RESONANCE studies of many tetragonal low-spin Co^{II} complexes reveal a ${}^{2}A_{1}$ ground state, with the unpaired electron largely localised in the $d_{z^{2}}$ orbital.¹ Thus hyperfine coupling to axial nitrogen bases is well defined,² but no such interaction with equatorial ligands has been observed. Complexes of ${}^{13}\text{CN}^{-}$ were therefore investigated, since splittings should be larger than for ${}^{14}\text{N}$ [$g_{\text{N}}({}^{13}\text{C})/$ $g_{\text{N}}({}^{14}\text{N}) = 3 \cdot 49$].

Spectra of pentacyanocobaltate(II) containing $^{12}CN^-$ and $^{13}CN^-$ (87.43% enrichment) are presented in Figure 1, and

demonstrate the extra splitting and line-broadening due to the ¹³C nuclei. The $M_{\rm I} = -\frac{1}{2}$ ⁵⁹Co hyperfine line in the $g_{\rm II}$ region was simulated by computer addition of spectra of the ¹²CN⁻⁻-complex suitably offset to represent the ¹³C interactions.³ Two coupling constants were used, for the single axial and 4 in-plane ligands. As the resulting line-shape was very sensitive to the precise numbers chosen, the parameters were obtainable with some precision (Figure 1 inset and Table). However, the complete spectrum could not be adequately reproduced by this technique, which demands isotropic A values. The relative magnitude of the ¹³C coupling constants is noteworthy, since the probability function $\psi\psi^*$ for the axial lobes of d_{z^2} is 4 times that of the in-plane lobe. For an ideal square pyramid, the a_1^* (d_{z^2}) MO must include the following linear combination of ligand

† Present address : School of Molecular Sciences, University of Sussex, Falmer, Brighton BN1 9QJ.

TABLE. E.s.r. parameters						
Complex			gu	$ A_{_{11}} ^{59}$ Co) $ imes 10^4/{ m cm^{-1}}$	$ A_{11} ^{(14N)} \times 10^{4}/\mathrm{cm}^{-1}$	$ A_{\rm II} ^{(13{\rm C})} \times 10^4/{\rm cm^{-1}}$
$[Co(CN)_5]^{3-a}$	••	•••	2.004	82		$\begin{cases} 39.5 \pm 1.0^{d} \text{ (ax)} \\ 9.0 \pm 0.5^{d} \text{ (eq)} \end{cases}$
$\substack{ \operatorname{Co}(\operatorname{CN}) \operatorname{cobalamin^b} \\ \operatorname{CoHCAB}(\operatorname{CN})_2^c }$	••	••	$2.005 \\ 2.004$	80 89	13-2	$ \begin{array}{c} 60 \ (ax) \\ 10.3 \pm 0.5^{d} \ (eq) \end{array} $

^a In methanol. ^b In 1:4 v/v ethylene glycol-water. Aquocobalamin in phosphate buffer pH 11.5 was reduced under vacuum with ascorbate, then mixed with KCN. ⁶ Aqueous solution. HCAB, human carbonic anhydrase B. ^d Parameters derived by simulation; consequent error limits are given.

 σ orbitals: $\psi_{a1} = \sigma_1 - \frac{1}{2}(\sigma_2 + \sigma_3 + \sigma_4 + \sigma_5)$, where the axial ligand is labelled 1. The hyperfine coupling energy is related to the square of the MO coefficient, hence A_{ax}/A_{eq} = 4.

FIGURE 1. 9.10 GHz e.s.r. spectra of [Co(CN)₅]³⁻ at 120 K. Samples were prepared under vacuum in methanol from an-hydrous CoCl₂ 1 mM and KCN 6 mM. The inset shows ¹⁸C splitting on the $M_{\rm I} = -\frac{1}{2}$ Co hyperfine line in the $g_{\rm II}$ region; (a) experimental, (b) simulated, with $|A_{\rm II}({\rm ^{13}C_{ax}})| = 39.4 \times 10^{-4}$ cm⁻¹ and $|A_{\rm II}({\rm ^{13}C_{eq}})| = 8.9 \times 10^{-4}$ cm⁻¹.

For cyano-Co^{II} cobalamin, the ¹³C splitting was directly measurable, with $|A_{II}(^{13}C_{ax})| = 50\%$ larger than in $[Co(CN)_5]^{3-}$. Since the benzimidazole base is detached [cf.cyano-Co^{II}cobinamide²], the increased delocalisation of unpaired electron density onto the axial ligand is attributed to greater donor character of the corrin group (a reverse cis-effect). Exactly parallel behaviour is shown by corresponding complexes with axial pyridine; $|A_{\parallel}|^{(14}N_{ax})|$ values in $[PyCo(CN)_{4}]^{2-}$ and pyridine-Co^{II}cobinamide are $12 \times$ 10^{-4} cm⁻¹ (ref. 4) and 18×10^{-4} cm⁻¹ (ref. 2) respectively. Moreover, for each CoL₄ system, $|A_{ii}|^{13}C_{ax}/A_{ii}|^{14}N_{ax}| =$ $3\cdot3$, *i.e.* close to the ratio of nuclear g factors.

The zinc enzyme carbonic anhydrase retains catalytic activity when reconstituted with cobalt(11).⁵ However, the Con enzyme forms a unique low-spin cyanide complex thought to involve 2 CN- ligands.⁶ Figure 2 illustrates e.s.r. spectra of the 12CN-- and 13CN--derivatives. The ¹⁴N hyperfine triplets are assigned to an axial histidine ligand, one of 3 in the native enzyme.⁷ The ¹³C effect was

FIGURE 2. 9.15 GHz e.s.r. spectra of CoHCAB(CN)₂ at 77 K Samples were prepared under nitrogen from CoHCAB 0.4 mm and KCN 3 mm in 0.04 M tris-sulphate, pH 9-0. The inset shows ¹³C and ¹⁴N splitting on the $M_1 = +\frac{1}{2}$ Co hyperfine line in the g_{11} region; (a) experimental, (b) simulated, with $|A_{11}({}^{13}C_{eq})| = 10.3 \times 10^{-4} \text{ cm}^{-1}$.

reproduced as before with a spectrum accumulator, assuming 2 cyanides with equal coupling constant. The resulting value of $|A_{II}(^{13}C)|$ in comparison with the previous results indicates 2 equatorial cyanides bound via carbon; an axial N-bonded cyanide is not possible since C¹⁵N⁻ has no effect

on the spectrum.⁶ Titration experiments⁸ confirm the presence of 2 CN^- ligands, which are probably in the *cis* configuration, as the metal ion lies at the base of the activesite crevice.7 The e.s.r. spectrum at 35 GHz remains closely axial,⁸ so H_2O is unlikely to occupy an equatorial position in place of a protein ligand. The square-pyramidal structure (1) is therefore proposed. The evident conforma-

¹L. M. Engelhardt and M. Green, J.C.S. Dalton, 1972, 724.

² E.g. J. M. Assour, J. Amer. Chem. Soc., 1965, 87, 4701; J. H. Bayston, F. D. Looney, J. R. Pilbrow, and M. E. Winfield, Biochem., 1970, 9, 2164.
 ³ Cf. R. Malkin, B. G. Malmström, and T. Vänngård, FEBS Letters, 1968, 1, 50.

⁴ J. R. Pilbrow and M. E. Winfield, Mol. Phys., 1973, 25, 1073. The authors regard this species as a pyridine adduct of [Co(CN)_s]³⁻, but a 6-co-ordinate structure is unlikely.

S. Lindskog and B. G. Malmström, J. Biol. Chem., 1962, 237, 1129.

Nature, New Biol. 1972, 235, 131.

• S. A. Cockle, Biochem. J. in the press.

tional flexibility at the metal binding site may be significant as regards enzymic activity.

I thank the European Molecular Biology Organisation, I.C.I. Ltd., the British and Swedish M.R.C.'s, and the Swedish Natural Science Research Council for support.

(Received, 30th August 1973; Com. 1231.)