Electrophilic Behaviour of the Co-ordinated Nitrosyl Cation

By FRANK BOTTOMLEY,* WENDELL V. F. BROOKS, STEVEN G. CLARKSON, and SHIU-BOR TONG (Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada)

Summary It is proposed that co-ordinated NO⁺ having $\nu(NO) > 1886 \text{ cm}^{-1}$ or $F(N-O) > 13.8 \text{ mdyn Å}^{-1}$ will behave as an electrophile.

In contrast to free NO⁺, which is very readily attacked by nucleophiles [e.g. for NO⁺ + 2OH⁻ \rightleftharpoons NO₂⁻ + H₂O, K = $2 \cdot 3 \times 10^{31}$ (ref. 1)], nucleophilic attack at co-ordinated NO⁺ is relatively rare. The hydrolysis of [Fe(CN)₅NO]²⁻ (ref. 1) was an isolated example until relatively recently, when nucleophilic attack at [M(CN)₅NO]²⁻ (M = Ru, Os);^{2,3} [RuX(A⁻A)₂NO]ⁿ⁺ [A-A = 2,2'-bipyridyl or o-phenanthroline; X = NO₂, Cl, Br (n = 2), or pyridine (n = 3)];^{4,5} [RuCl(das)₂NO]²⁺ (das = o-phenylenebisdimethylarsine);^{6,7} [Ru(NH₃)₅NO]³⁺;⁸ and [IrCl₃L₂NO]⁺ (L = Ph₃P or Ph₃As)⁹ was demonstrated. Unsuccessful attempts to attack coordinated NO⁺ with nucleophiles have been reported.^{9,10} We propose a general relation between v(NO) or, more accurately, the N–O force constant (these crudely but conveniently measuring the electron density at the co-ordinated nitrogen atom of NO^{+ 11}) which correlates the existing scattered examples of the electrophilic behaviour of coordinated NO⁺ and allows prediction of such reactivity. This relation is partly prompted by one recently advanced for reactions of co-ordinated CO with RNH₂.¹²

The Table lists $\nu(NO)$ and F(N-O) (where the latter can be determined) for a selection[†] of reactive and unreactive complexes. The reactions of $[IrCl_5NO]^-$, $[IrBr_5NO]^-$, $[RuOH(NO_2)_4NO]^{2-}$, and *cis*- $[RuCl(NH_3)_4NO]^{2+}$ are reported here for the first time. Several of the complexes in the Table are known, from X-ray studies, to contain linear MNO groups,¹³ and therefore co-ordinated NO⁺. It can be confidently assumed, from their high $\nu(NO)$ frequencies,

[†] We have 'selected' examples in the sense that only one member of a series stands for all. For example, all $[RuX(bipy)_2NO]^{n+1}$ complexes are reactive, and have similar $\nu(NO)$; trans- $[MOH(NH_3)_4NO]^{2+1}$ (M = Ru, Os; X = OH⁻, Cl, Br, NH₂) are unreactive, and all have $\nu(NO) < 1878 \text{ cm}^{-1}$.

TABLE

Stretching frequencies, force constants, and reactivities of some complexes containing NO+

$\nu(NO) \ cm^{-1a}$	F (N–O)	Nucleophile
2006 ^b	16.0	ОН~, NH ₃ , N ₃ ~
1953	15.1	OH-, NH ₃ , N ₃ -, N ₂ H ₄
. 1945 ^b		MeO-, EtO-d
1938	14.7	OH-e
1925	14.6	OH~, NH₃, N₂H₄, NH₂OH
1927°	14.5	OH-, N ₃ -f
. 1927 ^b		OH-g
. 1920		$\rm NH_2OH$
. 1905 ^b	—	OH-h
. 1902	14·1	OH^- , N_2H_4
. 1886	$13 \cdot 9$	No reaction
. 1886	13.8	OH⁻, N₂H₄, N₃⁻¹
1878	13.5	No reaction
1885	13.4	No reaction
. 1833	12.3	No reaction
	$\begin{array}{c} \nu(\rm NO)\ cm^{-1a}\\ 2006^b\\ 1953\\ 1945^b\\ 1938\\ 1925\\ 1927^c\\ 1927^c\\ 1927^b\\ 1920\\ 1995^b\\ 1902\\ 1886\\ 1886\\ 1886\\ 1888\\ 1888\\ 1885\\ 1833\\ \end{array}$	$\begin{array}{c ccccc} \nu(\rm NO)\ cm^{-1a} & F\ (\rm N-O) \\ 2006^b & 16\cdot0 \\ 1953 & 15\cdot1 \\ 1945^b & \\ 1938 & 14\cdot7 \\ 1925 & 14\cdot6 \\ 1927^c & 14\cdot5 \\ 1927^b & \\ 1920 & \\ 1905^b & \\ 1902 & 14\cdot1 \\ 1886 & 13\cdot9 \\ 1886 & 13\cdot8 \\ 1878 & 13\cdot5 \\ 1885 & 13\cdot4 \\ 1833 & 12\cdot3 \\ \end{array}$

^a In aqueous solution, except where noted. ^b Nujol mull. ^c Acetone solution, ref. 5. ^d Ref. 9. ^e Ref. 1. ^f refs. 4 and 5. ^g Ref. 2. h Ref. 3. i Refs. 6 and 7.

the other complexes contain NO⁺ also. It is seen, from the Table, that all reactive complexes have $\nu(NO) > 1886 \text{ cm}^{-1}$, $F(N-O) > 13.8 \text{ mdyn Å}^{-1}$. The borderline between reactive and unreactive complexes is less clear cut than for carbonyls.^12 $[{\rm RuCl}_5{\rm NO}]^{2-}$ (unreactive) has a marginally greater N-O force constant than (reactive) [RuCl(das)₂-NO]²⁺. This may reflect an inadequacy in the three-atom approximation used for the force-constant calculations. Where possible, all spectra have been measured in solution. This is important, since, for example, K₂[RuCl₅NO] has $\nu(\rm NO)$ 1910 cm⁻¹ in the solid state, but 1886 cm⁻¹ in solution. Since we find there is often a decrease in the N-O frequency on dissolution of anionic nitrosyls, the extremely insoluble complexes $[M(CN)_5NO]^{2-}$ (M = Ru, Os) may lie closer to the borderline of reactivity than the Table implies.

The Table contains a reasonable range of six-co-ordinated complexes and of nucleophiles. Although not all permutations of nucleophiles and complexes have been investigated, some discrimination by the nucleophile is apparent. For instance, N_3^- reacts with $[RuCl(A-A)_2NO]^{2+4,7}$ and [IrBr₅NO]⁻, but not with [Ru(NH₃)₅NO]³⁺. NH₃ reacts slowly with [Ru(NH₃)₅NO]³⁺, giving a mixture of products, but with [IrBr₅NO]⁻ dinitrogen and an amminebromoiridium(III) complex are obtained instantaneously. The role of the nucleophile is being investigated. However, from the results we propose those complexes of NO+ with $\nu(NO) > 1886 \text{ cm}^{-1}$, $F(N-O) > 13.8 \text{ mdyn Å}^{-1}$ will show electrophilic behaviour of the co-ordinated NO+.

We thank the National Research Council of Canada and the University of New Brunswick Fund for financial support, and Johnson, Matthey and Mallory, Montreal for a generous loan of platinum metals.

(Received, 14th May 1973; Com. 703.)

- ¹ J. H. Swinehart, Coordination Chem. Rev., 1967, 2, 385.
- ² E. J. Baran and A. Müller, Chem. Ber., 1969, 102, 3915.

- ⁶ E. J. Baran and A. Müller, *J. amorg. Chem.*, 1969, 370, 283.
 ⁶ F. J. Baran and A. Müller, *J. Amer. Chem.*, 1969, 370, 283.
 ⁶ F. J. Miller and T. J. Meyer, *J. Amer. Chem.*, 50c., 1971, 93, 1294.
 ⁶ J. B. Godwin and T. J. Meyer, *Inorg. Chem.*, 1971, 10, 2150.
 ⁶ P. G. Douglas, R. D. Feltham, and H. G. Metzger, *J. Amer. Chem. Soc.*, 1971, 93, 84.
 ⁷ D. Douglas and P. Beltham, *I. Amar. Chem. Soc.*, 1972, 94, 5254.
- ⁷ P. G. Douglas and R. D. Feltham, J. Amer. Chem. Soc., 1972, 94, 5254.
- ⁸ F. Bottomley and J. R. Crawford, Chem. Comm., 1971, 200; J.C.S. Dalton, 1972, 2145; J. Amer. Chem. Soc., 1972, 94, 9092.
- ⁹ C. A. Reed and W. R. Roper, J.C.S. Dalton, 1972, 1243.
- H. Brunner, Z. anorg. Chem., 1969, 368, 120.
 J. Mašek, Inorg. Chim. Acta. Rev., 1969, 3, 99.
- ¹² R. J. Angelici and L. J. Blacik, Inorg. Chem., 1972, 11, 1754.

¹³ J. T. Veal and D. J. Hodgson, *Inorg. Chem.*, 1972, **11**, 1420; S. H. Simonsen and M. H. Mueller, *J. Inorg. Nuclear Chem.*, 1965, **27**, 309; P. T. Manoharon and W. C. Hamilton, *Inorg. Chem.*, 1963, **2**, 1043; F. Bottomley, to be published {structures of [Ru(NH₃)₅NO]- Cl_3 , H_2O and $[RuOH(NH_3)_4NO]Cl_2$ }.