Crystal and Molecular Structure of Hepta- μ_{3}-methylimido-heptakis(methylaluminium). A New Aluminium-Nitrogen Cage

By Peter B. Hitchcock, George M. McLaughlin, J. David Smith, and K. Mark Thomas*

(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary The molecule (MeAlNMe) ${ }_{7}$ has a cage structure; each aluminium and nitrogen atom is four-co-ordinate, and is bound to one methyl group and three atoms within the cage.

Thermal decomposition of the adduct $\mathrm{Me}_{3} \mathrm{Al}, \mathrm{NH}_{2} \mathrm{Me}$ in toluene at $215^{\circ} \mathrm{C}$ yields a solution from which white crystals (MeAINMe) ${ }_{x}$ may be isolated. ${ }^{1}$ Cryoscopic measurements in benzene appeared to indicate that the species in solution were octameric; an X-ray structural analysis, however, now shows that the molecules are heptameric.

Crystals of the compound (MeAINMe) ${ }_{7}$ were sealed in Pyrex capillaries and found to be monoclinic with $a=$ $14.059(7), \quad b=14.407(8), \quad c=14.435(8) \AA, \quad \beta=93.10(5)^{\circ}$, space group $P 2_{1} / c, Z=4\left[(\mathrm{MeAlNMe})_{7}\right.$ units] $D_{\mathrm{c}}=1 \cdot 13 \mathrm{~g}$ cm^{-3}. Intensity data for 928 independent reflections having $F_{0} \geqslant 6.0 \sigma\left(F_{0}\right)$ and $1^{\circ} \leqslant 2 \theta \leqslant 42^{\circ}$ were obtained on a Hilger and Watts Y290 four-circle diffractometer with Mo- K_{α} radiation. The structure was solved using a symbolic addition procedure, and refinement of the positional parameters of all nonhydrogen atoms with isotropic Debye factors has converged to $R=0.123$.

The structure consists of well separated molecules (MeAlNMe) ${ }_{7}$ with approximately $C_{3 v}$ symmetry (Figure). The C_{3} axis is along a line through $\mathrm{Al}(7)$ and $\mathrm{N}(2)$. All methyl groups point outwards from the cage. The alumin-ium-nitrogen framework comprises three six-membered (AlN$)_{3}$ rings, $\mathrm{Al}(1) \mathrm{N}(3) \mathrm{Al}(5) \mathrm{N}(6) \mathrm{Al}(4) \mathrm{N}(1), \mathrm{Al}(2) \mathrm{N}(4) \mathrm{Al}(6)-$ $\mathrm{N}(7) \mathrm{Al}(5) \mathrm{N}(3)$, and $\mathrm{Al}(3) \mathrm{N}(1) \mathrm{Al}(4) \mathrm{N}(5) \mathrm{Al}(6) \mathrm{N}(4)$ with a boat conformation and six four-membered (AlN) ${ }_{2}$ rings $\mathrm{Al}(4) \mathrm{N}(6) \mathrm{Al}(7) \mathrm{N}(5), \mathrm{Al}(5) \mathrm{N}(7) \mathrm{Al}(7) \mathrm{N}(6), \mathrm{Al}(6) \mathrm{N}(5) \mathrm{Al}(7) \mathrm{N}(7)$, $\mathrm{Al}(1) \mathrm{N}(2) \mathrm{Al}(2) \mathrm{N}(3), \quad \mathrm{Al}(2) \mathrm{N}(2) \mathrm{Al}(3) \mathrm{N}(4), \quad$ and $\mathrm{Al}(3) \mathrm{N}(2)-$ $\mathrm{Al}(1) \mathrm{N}(1)$. The six-membered rings with mean Al-N bond length $1.96 \AA$ and angles $\mathrm{Al}-\mathrm{N}-\mathrm{Al}, 120.0^{\circ}$ and $\mathrm{N}-\mathrm{Al}-\mathrm{N}$,
110.7° are similar to those in the molecules $\left(\mathrm{Me}_{2} \mathrm{AlNHMe}\right)_{3}{ }^{2}$ and the four-membered rings, with Al-N $1.90 \AA$, and angles $\mathrm{Al}-\mathrm{N}-\mathrm{Al}, 88.8^{\circ} ; \mathrm{N}-\mathrm{Al}-\mathrm{N}, 89.5^{\circ}$ are like those in the molecules (PhAlNPh $)_{4}{ }^{3}$ and $\left.\left(\mathrm{Me}_{2} \mathrm{AlNMe}\right)_{2}\right)_{2}{ }^{2}$ The n.m.r. spectrum ${ }^{1}$ of

Figure
(MeAlNMe) $)_{7}$ is now readily explained; it is clear that both this compound and the ethyl analogue (EtAlNMe) ${ }_{7}{ }^{4}$ are heptameric in solution and that the previously reported molecular weights were inaccurate.

Examples of organometallic compounds ($\left.\mathrm{R}^{1} \mathrm{XYR}^{2}\right)_{x}$ are known for values of x from 1 to 5^{5} and 8^{6} but the molecule (MeAlNMe) ${ }_{7}$ is the first heptameric species to be characterised by X-ray methods. It is possible that the compounds EtMgOPrn, $\operatorname{Pr}^{\mathbf{1}} \mathbf{M g O M e}$, and $\operatorname{Pr}^{1} \mathrm{MgOEt}$, which are appar-
ently heptameric or octameric in solution, ${ }^{7}$ form similar isoelectronic cages.

We thank the S.R.C. for support.
(Received, 17th October 1973; Com. 1432.)
${ }^{1}$ K. J. Alford, K. Gosling, and J. D. Smith, J.C.S. Dalton, 1972, 2203.
${ }^{2}$ G. M. McLaughlin, G. A. Sim, and J. D. Smith, J.C.S. Dalton, 1972, 2197.
${ }^{3}$ T. R. R. McDonald and W. S. McDonald, Acta Cryst., 1972, B28, 1619.
${ }^{1}$ K. Gosling, J. D. Smith, and D. H. W. Wharmby, J. Chem. Soc. (A), $1969,1738$.
${ }^{5}$ G. E. Coates and K. Wade, 'Organometallic Compounds. Vol. 1. The Main Group Elements,' Methuen, London, 3rd edn., 1967.
${ }^{6}$ G. W. Adamson and H. M. M. Shearer, Chem. Comm., 1969, 897.
${ }^{7}$ G. E. Coates, J. A. Heslop, M. E. Redwood, and D. Ridley, J. Chem. Soc. (A), 1968, 1118.

