Tertiary Phosphine Palladium(0) Complexes

By ALFREDO MUSCO,* WITOLD KURAN, ALBERTO SILVANI, and MAURICE W. ANKER (Istituto di Chimica delle Macromolecole del CNR, Via Alfonso Corti, 12 - 20133 Milano, Italy)

Summary The co-ordination number of the phosphine complexes PdL_n may be 2, 3, or 4 depending on the steric hindrance of the phosphine and may change on going from the solid state into solution.

WE have found that Pd^0 tertiary phosphine complexes of the type PdL_n (n = 2,3,4) can be prepared through displacement of the allyl ligand from (2-methylallylPdCl)₂ by excess of phosphine. The behaviour of the Pd⁰ complexes in solution has been studied by ¹³C n.m.r. The position of equilibrium $PdL_4 \rightleftharpoons PdL_3 + L$ lies well to the left for PdL_4 (L = PMePh₂) although ligand exchange occurs. The evidence is as follows: (a) the ¹³C chemical shift separations of the PdL_4 complex do not vary on lowering the temperature; (b) the presence of undissociated PdL_4 at low temperatures is confirmed by the addition of free phosphine to the solution, when additional peaks from the free phosphine are observed; at room temperature exchange between co-ordinated and free phosphine occurs and the observed chemical shifts correspond to the appropriately weighted averages of PdL₄ and L. The ¹³C chemical shifts (δ , p.p.m. (± 0.1) downfield from Me₄Si, 22.62 MHz, CH₂Cl₂, 30°) obtained for CH₃, C-1, o-C, m-C, p-C are as follows: L, 12.6, 141.0, 132.5, ca. 128.6, ca. 128.6; PdL₄, 18.7, 144.1, 132.1, 127.9, 127.7; PdL₄ + L(1:1), 17.4, 143.3, 132.1, 127.9, 127.7.

A cryoscopic molecular weight determination provides further support that the tetrakis-PMePh₂ complex is practically undissociated in solution.[†] Similarly the tetrakis-complexes of PMe₂Ph (¹³C n.m.r. and molecular weight) and PMe₃ (¹³C n.m.r.) are not appreciably dissociated in solution.

For $L = PEt_3$ or $PBun_3$, PdL_4 complexes (white crystalline solids below 0°) are obtained in the preparative reaction; from them PdL_3 complexes (yellow oils) are obtained by pumping in high vacuum. The tetrakis-complexes of PEt_3 and $PBun_3$ are extensively dissociated to the tris-species in solution at room temperature. The ¹³C chemical shifts of the PdL_4 complexes correspond to the weighted averages of those of PdL_3 and L in a 1:1 ratio [e.g. $L = PEt_3$, δ α -C and β -C:L, 19.5, 10.3; PdL_3 (THF) 23.4, 9.5; PdL_4 (THF) 22.6, 9.4]. Gerlach and his co-workers² have shown that $Pt[PEt_3]_4$ behaves similarly.

In the case of $L = P(benzyl)_3$, PdL_3 can be prepared and PdL_4 does not form in solution even in the presence of an excess of free phosphine; thus the ¹³C spectrum of a 1:1 mixture of PdL_3 and L shows one set of signals at room temperature due to exchange average, but at low tempera-

ture it shows two sets of signals corresponding to PdL_3 and L [δ CH₂, C-1, o-C, m-C, p-C, 30°: L (CH₂Cl₂) 34·7, 138·3 129·5, 128·7, 126·1; PdL₃ (THF) 37·2, 137·9, 130·5, 128·2, 125·9; PdL₃ + L (1:1, THF) 36·6, 138·0, 130·2, 128·3, 125·9].

For L = PPrⁱ₃ the PdL₃ species, which is formed in the reaction, loses one molecule of L in high vacuum yielding the 14-electron PdL₂ complex and for L = P(cyclohexyl)₃ and PBu^t₂Ph, PdL₂[‡] was isolated. The ¹³C chemical shifts of a mixture of Pd[P(cyclohexyl)₃]₂ and P(cyclohexyl)₃ are weighted averages of the chemical shifts of the complex and of the free phosphine thus indicating that the equilibrium PdL₂ + L \rightleftharpoons PdL₃ lies to the left [$\delta \alpha$ -C, β -C, γ -C, δ -C (toluene) 30°: L, 32·2, 31·6, 28·0, 26·9; PdL₂, 34·9, 32·4, 28·1, 27·2; PdL₂ + L (1:1), 33·9, 32·2, ca. 28·2, ca. 27·2].

From the results given above the phosphines may be ordered according to their preference in forming complexes of low co-ordination numbers. $PMe_3 \sim PMe_2Ph \sim PMePh_2$ $\langle PPh^4_3 \sim PEt_3 \sim PBu^n_3 \langle P(benzyl)_3 \langle PPr^1_3 \langle P(cyclo$ $hexyl)_3 \sim PBu^t_2Ph$. This order is clearly that of increasing steric hindrance and does not correlate well with the variation in the basicity of the phosphines. The 18 and 16 electron rule formulated by Tolman⁵ requires a co-ordination number of 3 and 4 for Pd⁰, but it is apparent from our results that if the ligands are too bulky then 14 electron two-co-ordinate complexes may be formed.

(Received, 6th September 1973; Com. 1250.)

† Clark and Itoh reached the same conclusion on the basis of a ¹H n.m.r. study,¹ although their evidence was less conclusive.

 $The complex Pd[P(cyclohexyl)_3]_2$ has been reported by other authors.³ X-Ray structure determination has shown that this molecule is monomeric and has a bent geometry, the P-Pd-P angle being 158° (A. Immirzi, personal communication).

¹ H. C. Clark and K. Itoh, Inorg. Chem., 1971, 10, 1707.

² D. H. Gerlach, A. R. Kane, G. W. Parshall, J. P. Jesson, and E. L. Muetterties, J. Amer. Chem. Soc., 1971, 93, 3543.

³ R. Van Der Linde and R. O. De Jongh, Chem. Comm., 1971, 563; K. Kudo, M. Hidai, and Y. Uchida, J. Organometallic Chem., 1973, 56, 413.

⁴ C. A. Tolman, W. C. Seidel, and D. M. Gerlach, J. Amer. Chem. Soc., 1972, 94, 2669; W. Kuran and A. Musco, J. Organometallic Chem., 1972, 40, C 47.

⁵ C. A. Tolman, Chem. Soc. Rev., 1972, 337.