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Facilitation of Intramolecular 1,2=Shifts in Radicals by Protonation, and the 
Mechanism of Reactions Catalysed by 5‘-Deoxyadenosylcobalamin 

By BERNARD T. GOLDING~ and LEO RADOM* 
(The Research School of Chemistry, Australian National University, Canberra, A .C. T .  2600, Australia) 

Summary A b initio molecular orbital calculations show 
that 1,2-intramolecular shifts in simple organic radicals 
may be facilitated by protonation of the migrating group; 
the relevance of this result to reactions catalysed by 5’- 
deoxyadenosylcobalamin is demonstrated. 

ABUNDANT experimental and theoretical information is 
available which shows that intramolecular 1,2-shifts in 
carbocations often occur readily.1 However, with simple 
organic radicals (not containing =-systems or hetero-atoms 
with low-lying d-levels) there are very few authenticated 
intramolecular 1,2-shifts since the transition state for such 
a process generally involves one-electron occupancy of an 

orbital of relatively high energy.2 By applying ab initio 
molecular orbital theory3 to a simple model system, we 
have examined whether protonation of a potential migratory 
group can facilitate its 1,2-shift to a radical centre. 

Consider the hypothetical degenerate rearrangement of 
the hydroxyethyl radical, (1) $ (1’) via the bridged species 
(2) (Scheme 1). Our calculations fail to reveal any structure 
corresponding to (2) with energy lower than for the separ- 
ated species ethylene and hydroxyl radical. Therefore, if the 
rearrangement (1) + (1’) does occur, it proceeds through a 
dissociation-recombination mechanism. 

If the above system is modified by protonation, the 
rearrangement can be formulated as (3) + (3’) via (4) 
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(Scheme 2). In this case, our calculations show that the 
bridged structure (4) is bound relative to the separated 
species H,O and C,H,+ by 17-4 kcal mol-l. Furthermore, 
the transformation (3) + (3') via (4) as putative transition 
state is calculated to require an activation energy of only 
8.3 kcal mol-l. 

HO 
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SCHEME 1. 1,2-1ntramolecular shift in the hydroxyethyl radical 
showing important (calculated) bond lengths (A) and bond 
angles (degrees). 

The lowering of the activation energy for (3) + (3') com- 
pared with the unprotonated example (1) + (1') may be 
due to inductive withdrawal of electron density from the 
radical centre following protonation of (1). This makes 
species (3) more like a carbocation and so the 1,2-shift 
occurs more easily. In addition, the bridged structure (4) 
may be stabilised by a charge-dipole interaction. An 
approximate assessment of this factor shows that it is likely 
to contribute significantly to the binding energy of 17.4 
kcal mol-1. 

SCHEME 2. 1,2-Intramolecular shift in the protonated hydroxy- 
ethyl radical showing important (calculated) bond lengths (A) and 
bond angles (degrees). 

The simple idea that protonation of a group can promote 
its intramolecular lJ2-shift to a radical centre leads to the 
mechanism suggested below for a type of rearrangement 
catalysed by 5'-deoxyadenosylcobalamin.4 In the con- 
version of (B)  - or ( S )  -propane- 1 ,Z-diol into propanal induced 
by the enzyme dioldehydrase in the presence of 5'-deoxy- 
adenosylcobalamin, the oxygen atom at  C-2 of a molecule 
of substrate is transferred to C-1 of the probable inter- 
mediate 1, l-dihydroxypropane.6" Several mechanisms have 
been suggested for this reaction6 (and the related conversion 
of ethane- 1 ,2-diol into acetaldehyde). These suggestions 
include the intramolecular 1,2-shift of a hydroxy-group to a 
radical centre6c [analogous to (1) + (1') via (2)]  which we 
have shown t o  be unlikely. Nevertheless, there is good 
evidence for the involvement of substrate-derived and 
product derived radicals in the rearrangement.6 

We suggest that the enzymatic rearrangement of propane- 
lJ2-diols to propanal takes place as shown in Scheme 3. 
The crucial species (6)-(8) arise from the assumed ability' 
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SCHEME 3. Suggested mechanism for the conversion of (S)- 
propane-1,2-diol into propanal catalysed by dioldehydrase and 
5'-deoxyadenos ylcobalamin. 

of dioldehydrase to protonate the radical (5).  The retention 
of oxygen at C-2 of substrate by the product (despite an 
aqueous medium) is thus easily explained. Although the 
protonated radicals (6)-(8) differ from (3) and (4) by the 
presence of extra substituents in the former, our calcula- 
tions suggest that the effect of these substituents (OH and 
Me) decreases the energy difference between the bridged 
and open species. 
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A model system for the above enzymatic reactions is 
provided8 by the ready conversion at pH 2.5-4 of the 
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radical (9) (derived by attack of .OH on ethane-1,2-diol) 
into (10). It is believed that radical (11) is also formed 
under these conditions. These results are consistent with 
a mechanism for the conversion of (9) into (10) proceeding (Received, 13th September 1973; Com. 1275.) 
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via protonated (9) and (ll), in a manner analogous to the 
steps (6) + (8) in Scheme 3. 
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