Conformational Free Energy (ΔG Value) of the Amino-group in Cyclohexylamine from Low Temperature Carbon-13 Nuclear Magnetic Resonance Spectroscopy

By HAROLD BOOTH

(Department of Chemistry, University of Nottingham, Nottingham NG7 2RD)

Summary The carbon-13 n.m.r. spectrum of cis-4-methylcyclohexylamine, measured at -75 °C, reveals signals for both possible chair conformations, and the measured ratio of 1.95 to 1 leads to a value of 6.05 ± 0.17 kJ mol⁻¹ for $\Delta G(\text{NH}_2)$. The most direct method of determining conformational free energies (ΔG or A values) of substituents uses low-temperature n.m.r. spectroscopy of substituted cyclo-hexanes. Using ¹H resonance, the method has been applied to cyclohexanes substituted by most common

groups,^{1,2} a notable exception being the amino-group. Using ¹³C resonance, we have hitherto failed to observe signals from the axial conformation (1a) of cyclohexylamine (expected proportion ca. 2%) when recording the noise-decoupled spectrum in the Fourier transform (F.T.) mode at -75 °C. The amine, dissolved in CFCl_a containing 9% (v/v) CDCl₃, was examined over 4000 Hz with a pulse width of $4\,\mu s$ (30° tip) and a 1.2 s repetition time, the free induction decay being sampled using 8k data points.

However, when the same conditions were applied to *cis*-4-methylcyclohexylamine (1b) \rightleftharpoons (2b) (the low-temperature ¹H spectrum of which is complicated by overlapping signals), the ¹³C spectrum showed broadening effects at reduced temperatures and exhibited signals for both (1b) and (2b) at -75 °C. Assignment of lines to individual carbon atoms (see Table) made use of the known parameters for equatorial and axial methyl groups,3 and the carbon-13 shifts in cyclohexylamine and trans-4-methylcyclohexylamine (3). The spectrum of (3) was unaffected by cooling the sample to -80 °C, confirming that the rate process being observed for the cis-amine was one of ring inversion $(1b) \rightleftharpoons (2b).$

Proportions of (1b) and (2b) were estimated by integration and comparison of (i) integrals for C-1 [giving (1b)/

- ¹ J. A. Hirsch, Topics Stereochem., 1967, 1, 199.
- ² F. R. Jensen, C. H. Bushweller, and B. H. Beck, J. Amer. Chem. Soc., 1969, 91, 344.
 ³ D. K. Dalling and D. M. Grant, J. Amer. Chem. Soc., 1967, 89, 6612.
 ⁴ H. Booth and D. V. Griffiths, J.C.S. Perkin II, 1973, 842.

- ⁵ H. J. Schneider, R. Price, and T. Keller, Angew. Chem. Internat. Edn., 1971, 10, 730.

(2b) = 2.04]; (ii) integrals for the methyl carbon [1b)/(2b)= 1.92; and (iii) total integrals for (1b) and (2b) [1b)/(2b)= 1.88]. Differences in spin-lattice relaxation times (T_1) of structurally identical (but stereochemically different) carbon atoms could lead to distortions in observed intensities. However, T_1 experiments (involving a $180^{\circ}-\tau-90^{\circ}$ pulse sequence) at rooom temperature (solvent CDCl₃) showed that each carbon in $(1b) \rightleftharpoons (2b)$ had an almost identical T_1 value to that of the corresponding carbon in the trans-amine (3). Measured values were 8.6 s (C-1), 5.7 s (C-4), 4.3 s (C-2, C-3, C-5, C-6), and 4.3 s (CH₃). It follows that structurally identical carbon atoms in (1b) and (2b) almost certainly possess identical T_1 values.⁵

TABLE

Carbon-13 shifts (p.p.m. from Me₄Si) in cyclohexylamines (CFCl₃-CDCl₃)

Carbon	(1a) ⇒(2a)	(1b) ⇒(2b)	(1b)	(2b)	(3)
Carbon	-12 0	-10 0	-10 0	-10 0	-10 0
1	50.9	47.4	44.9	51.4	50.6
2,6	37.1	29.7	28.5	30.7	36.5
3,5	25.6	$32 \cdot 9$	33.0	30.7	34 ·0
4	25.8	31.1	33 ·0	$26 \cdot 2$	32.1
Me		21.2	$23 \cdot 1$	17.4	22.6

The ratio (1b): (2b) of 1.95:1 leads to a conformational free-energy difference (at -75 °C) of 1.09 kJ mol⁻¹. Taking $\Delta G(Me)$ as 7.14 kJ mol⁻¹ gives $\Delta G(NH_2)$ as 6.05 \pm 0.17 kJ mol⁻¹; for comparison, Hirsch¹ quotes a 'best value' of 5.04 kJ mol^{-1} for NH₂ in aprotic solvents.

The shifts in the Table yield the following additive chemical shift parameters (see refs. 3, 4 for nomenclature) for the NH₂ group in cyclohexanes, in p.p.m.:

 $\begin{array}{c} \alpha_{e} \ 24 \cdot 7, \ \beta_{e} \ 9 \cdot 8, \ \gamma_{e} - 1 \cdot 2, \ \delta_{e} - 0 \cdot 7 \\ \alpha_{a} \ 18 \cdot 7, \ \beta_{a} \ 2 \cdot 0, \ \gamma_{a} - 2 \cdot 4, \ \delta_{a} \ 0 \cdot 9. \end{array}$

Of additional interest are the small but significant shift differences between the methyl carbon of (1b) and (3) and between C-1 of (2b) and (3).

We thank the S.R.C. for provision of funds in part for the purchase of a [EOL P.S. 100 pulsed spectrometer and NICOLET 1085 computer.

(Received, 8th October 1973; Com. 1384.)