Free Radicals as Intermediates in the Oxidative Addition of Alkyl Halides to Platinum(0)

By Michael F. Lappert* and Peter W. Lednor

(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Free radicals are implicated in the oxidative addition of an alkyl halide RX (MeI, CD_3I , EtI, or PhCH₂Br) to Pt(PPh₃)₃, as shown by identifying (e.s.r.)

the derived nitroxide $\operatorname{Bu}^t(R)\operatorname{NO}$ using $\operatorname{Bu}^t\operatorname{NO}$ as a spin trap; a non-chain mechanism is proposed, with the formation of $[\operatorname{Pt}^I X(\operatorname{PPh}_3)_2]$ as rate limiting.

WE offer definitive evidence, principally e.s.r., that the formally two-electron oxidative (Pt⁰ \rightarrow Pt^{II}) addition of an alkyl halide RX to $Pt(PPh_3)_3$ yielding trans- $PtX(R)(PPh_3)_2$ proceeds in discrete one-electron steps, with the free radical R, and probably a halogenoplatinum(I) species such as (I), as intermediates. The following halides were examined: MeI, CD₃I, EtI, PhCH₂Br, and Ph₃CCl. An important feature of this study is the use of the spin trap Bu^tNO (cf., ref. 1 for its previous use in transition-metal chemistry), which with \mathbb{R} affords the nitroxide $\operatorname{But}(\mathbb{R})\operatorname{NO}$. The principal data to support our conclusion are (i) the identification of the nitroxide $Bu^{t}(R)NO$ for R = Me, CD₃, Et, or PhCH₂, each of which has previously been characterised by e.s.r. (ii) the demonstration that in these systems Bu^tNO does not significantly change the course of reaction yielding trans-PtX(R)(PPh₃)₂; (iii) the formation of the stable and readily identifiable (e.s.r.) trityl radical $\mathrm{Ph}_{a}\mathrm{C}\text{-},$ in appropriate equilibrium concentration with its dimer in the system $Pt(PPh_3)_3 + Ph_3CCl$, to give $PtCl_2$ - $(PPh_3)_2$ as the metal-bearing product; and (iv) the lack of reaction between $Pt(PPh_3)_3$ and Ph_3C in benzene at 20°. Additionally, (v), the suggestion that a species such as $[PtX(PPh_3)_2]$ is an intermediate conveniently account for the formation of $PtX_2(PPh_3)_2$ or trans- $PtH(X)(PPh_3)_2$ in other Pt(PPh₃)₃-halide systems, by halogen or hydrogen atom abstraction reactions of (I); and (vi) a radical mechanism is compatible with the kinetic data of Halpern and his co-workers (R = MeI),² assuming the sequence of equations (1)—(3).

$$Pt(PPh_3)_3 \rightleftharpoons Pt(PPh_3)_2 + PPh_3 \tag{1}$$

$$Pt(PPh_{3})_{2} + RX \xrightarrow{slow} [PtX(PPh_{3})_{2}] + R \cdot$$
(2)

$$[PtX(PPh_3)_2] \cdot + R \cdot \xrightarrow{fast} trans-PtX(R)(PPh_3)_2$$
(3)

reagents took place in the e.s.r. tube. Spectra were then recorded immediately, and again after $\frac{1}{2}$ h at 20° in the dark. The former spectra showed for A a clean intense signal of But(R)NO, but no signal for B or C. The spectra for A were unchanged after $\frac{1}{2}$ h; for B and C only a signal corresponding to Bu^tNO (decomposition of Bu^tNO) had appeared. $[Pt(PPh_3)_3$ was shown to enhance the rate of formation of But₂NO. from ButNO in benzene, but this process is slower than the production of $Bu^{t}(R)NO \cdot in A$]. A preparative scale reaction between $Pt(PPh_3)_3$ and excess of RX, in the presence of Bu^tNO [10 mole% with respect to Pt(PPh₃)₃] in benzene led to the isolation of trans- $[PtI(Me)(PPh_3)_2]$ (62%). The literature value for the same reaction, but without Bu^tNO or benzene, is 68%. None of the alternative mechanisms³ which have been

For each of the halides MeI, EtI, or PhCH₂Br three

experiments were performed: A, $Pt(PPh_3)_3 + RX +$

ButNO; B, RX + ButNO; C, Pt(PPh₃)₃ + excess RX until

no further colour change, then $+ Bu^{t}NO$. $Pt(PPh_{3})_{3}$ and

RX were used as 5×10^{-2} M solutions in benzene, Bu^tNO

as 5-10 mole % with respect to Pt(PPh₃)₃ for A and C

and to RX for B. Equimolar amounts of Pt(PPh₈)₃ and

RX were used for A. All experiments were carried out in

the dark under argon, and for A and B mixing between

proposed for oxidative addition to the d^{10} Pt⁰ or related d^8 systems such as trans-IrCl(CO)(PPh₃)₂, including $S_N 2$ at C, a concerted molecular process, or a radical chain mechanism (for IrI),⁴ are compatible with the data for the case of Pt(PPh₃)₃. However, for oxidative addition of RX to [Co(CN)₅]³⁻³ or Mg,⁵ radical mechanisms similar to equations (2) and (3) have been suggested on the basis of other types of evidence.

We thank S.R.C. for the award of a studentship to P.W.L.

(Received, 21st September 1973; Com. 1321.)

- ¹ D. J. Cardin, M. F. Lappert, and P. W. Lednor, J.C.S. Chem. Comm., 1973, 350.
- ² J. P. Birk, J. Halpern, and A. L. Pickard, J. Amer. Chem. Soc., 1968, 90, 4491; Inorg. Chem., 1968, 7, 2672. ³ Cf., J. Halpern, Accounts Chem. Res., 1970, 3, 386.
- J. S. Bradley, D. E. Connor, D. Dolphin, J. A. Labinger, and J. A. Osborn, J. Amer. Chem. Soc., 1972, 94, 4043.
 H. W. H. J. Bodewitz, C. Blomberg, and F. Bickelhaupt, Tetrahedron, 1973, 29, 719.