Stabilisation of Metals in a Low Co-ordinative Environment using the Bis(trimethylsilyl)methyl Ligand; Coloured Sn^{II} and Pb^{II} Alkyls, M[CH(SiMe₃)₂]₂

By Peter J. DAVIDSON and MICHAEL F. LAPPERT*

(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary $(Me_3Si)_2CHLi$ and $SnCl_2$ in ether at 0° give $Sn[CH(SiMe_3)_2]_2$, which is diamagnetic at room temperature and behaves chemically as a singlet 'stannylene', yielding complexes such as $R_2SnM'(CO)_5$ (M' = Cr or Mo).

RECENTLY some thermally-stable binary alkyls of the early transition metals have been reported, notably those having $Me_3SiCH_2^-$ or $Me_3CCH_2^-$ as ligands.¹ We now describe the first examples of the use as a ligand of the more bulky $(Me_3Si)_2CH^-$ (see ref. 2). This is isoelectronic with $(Me_3-Si)_2N^-$, a ligand often found in low co-ordinate metal dialkylamides.³

Organotin(II) derivatives, SnR_2 , are not well-established except for the rather ionic cyclopentadienyls and related compounds, and attempts to prepare them lead to oligomers, $(Sn^{IV}R_2)_n$.⁴ We now find that tin(II) chloride reacts with (Me₃Si)₂CHLi⁵ in ether at 0° to give the red, crystalline (X-ray studies are in hand), monomeric (cryoscopy in $C_6H_6),$ diamagnetic (20°) ${\rm Sn}[{\rm CH}({\rm SiMe}_3)_2]_2.$ This shows the monomeric molecular ion in the mass spectrum, and has other spectral properties consistent with the Sn^{II} formulation. It behaves chemically as a singlet 'stannylene' or carbene-analogue: thus, with $M'(CO)_{\delta}$ (M' = Cr or Mo) in hexane at 20° under u.v. irradiation it affords stannylene complexes (see Table). [The type $R_2Sn(THF)M'(CO)_5$ has been described].⁶ The reaction with γ -picoline gives a 1:1-adduct which reversibly dissociates in solution at 20°. All the compounds shown in the Table are analytically-pure, air-sensitive, and soluble in non-polar media.

THORE			
Compound	M.p. (°Ĉ)	Colour	Yield (%)
$\begin{array}{l} [(Me_3Si)_2CH]_2Sn^4 & \dots \\ [(Me_3Si)_2CH]_2SnCr(CO)_5 & \dots \\ [(Me_3Si)_2CH]_2SnMo(CO)_5^b & \dots \\ [(Me_3Si)_2CH]_2Sn\cdot4-MeC_5H_4N \end{array}$	$135-137 \\ 120 \\ 109-110 \\ 77-81$	Red Orange Yellow Orange	54 27 64 65
$[(Me_3Si)_2CH]_2Pb$	(decomp.) 43-45	Purple	3

^a M 446 (required 438). ^b M 672 (cryoscopy in C₆H₆) (required 674).

The He(I) photoelectron spectrum of $Sn[CH(SiMe_3)_2]_2$ shows a doublet at low ionisation energy (7·42 and 8·33 eV); the 5*p* level in atomic tin lies at 7·32 eV. The colour is attributed to charge transfer between Sn non-bonding and vacant Si 3*d*-levels. The colour fades reversibly upon cooling to liquid nitrogen temperature, suggesting closelying, thermally-accessible electronic states. The ¹¹⁹Sn Mössbauer spectrum shows an isomer shift of 0·06 mm s⁻¹ (relative to α -Sn) and a quadrupole splitting of 2·31 mm s⁻¹. The former value is unusually low for a Sn^{II} complex, but is considerably higher than for Sn^{IV} species. A wide C-Sn-C angle would lower Sn 5*s*-electron density with consequential low isomer shift; the latter parameter is, however, also affected by other factors, such as bond ionicity.

We thank S.R.C. for the award of a studentship to P.J.D., and Dr. J. D. Donaldson (Mössbauer) and Mr. G. J. Sharp (photoelectron) for spectra.

(Received, 19th March 1973; Com. 382.)

¹ Cf., C. S. Cundy, B. M. Kingston, and M. F. Lappert, Adv. Organometallic Chem., 1973, 11, 253; G. Wilkinson, Plenary Lecture to Fifth International Conference on Organometallic Chemistry, Moscow, August, 1971; Pure Appl. Chem., 1972, 30, 627.

- ² M. R. Collier, M. F. Lappert, and M. M. Truelock, J. Organometallic Chem., 1970, 25, C36.
- ⁸ E. C. Alyea, D. C. Bradley, and R. G. Copperthwaite, *J.C.S. Dalton*, 1972, 1580, and earlier papers by H. Bürger, *et al.*, and D. C. Bradley, *et al.*
 - ⁴ Cf., J. D. Donaldson, Progr. Inorg. Chem., 1967, 8, 287.

^b M. A. Cook, C. Eaborn, A. E. Jukes, and D. R. M. Walton, J. Organometallic Chem., 1970, 24, 529.

⁶ T. J. Marks, J. Amer. Chem. Soc., 1971, 93, 7090; T. J. Marks and A. R. Newman, ibid., 1973, 95, 769.

TABLE