Synthesis of Olefins by Desulphuration of $\alpha\beta$ -Unsaturated Phenyl Sulphones

By V. PASCALI and A. UMANI-RONCHI*

(Istituto Chimico 'G. Ciamician,' Via Selmi 2, Bologna, Italy)

Summary Reductive cleavage of $\alpha\beta$ -unsaturated phenyl sulphones with aluminium amalgam or LiAlH₄-CuCl₂ provides an attractive synthetic route to a variety of olefins in high yields.

RECENTLY we reported that 1,1-dimetal derivatives of alkyl and benzyl phenyl sulphones (I) obtained via Li-Mg exchange give good yields of $\alpha\beta$ -unsaturated phenyl sulphones (II) on treatment with aldehydes or ketones.¹

$$\begin{array}{c} M^{1} \\ | \\ PhSO_{2}-C-R^{1} + R^{2}C(O)R^{3} \rightarrow PhSO_{2}(R^{1})C = CR^{2}R^{3} \\ | \\ M^{2} \\ (I) \end{array}$$
(II)

 $M^1 = Li$, $M^2 = MgI$, or $M^1 = M^2 = Li$ or MgI; $R^1 = H$, or

We now report that $\alpha\beta$ -unsaturated phenyl sulphones can be converted easily into the corresponding olefins (I_{1}) by reductive cleavage of the carbon-sulphur bond $\mathbf{w}_h^{\prime\prime}$ aluminium amalgam. As shown in the Table olefins

$$\begin{array}{c} PhSO_2(R^1)C = CR^2R^3 \xrightarrow{Al-Hg} R^1CH = CR^2R^3 \\ (II) & (III) \end{array}$$

produced in yields of ca. 85%. Products were identia either by direct comparison with authentic material of n.m.r., i.r., and mass spectra and elemental analysis.

The reaction seems to be completely stereoselective; Z-1,2-diphenylvinyl phenyl sulphone and Z-2-p-chloro-

	TARLE		TT 11 (000 -
$PhSO_{2}(R^{1})C = CR^{2}R^{2}$	3		$\frac{Y_{1}eid}{R^{1}CH} = CR^{2}R^{8}$
Γ R ⁱ	R²	\mathbb{R}^{8}	
н	Ph	Ph	90ъ 60с
\mathbf{Ph}	Ph	H	90b,d
**	p-ClC ₆ H ₄	H	90b.d
**	Ph	\mathbf{Ph}	85 ^b 65 ^c 40 ^e
19	Cholest-4-en-3-y	lidene	80b,1 60c 1

h man Al Ur

^a Yield of isolated, purified compounds. ^b From Ai Li ^c From LiAlH₄-CuCl₂. ^d E-isomer from Z-isomer. ^e From LiAlH₄. ^t Mixture of isomers.

The conversion of the former into (E)-1,2-diphenylethylene illustrates a typical procedure. Aluminium amalgam² (0.02 g. atom Al in 2% aqueous HgCl₂) was added to a solution of Z-1,2-diphenylvinyl phenyl sulphone (1 mmol) 10% aqueous tetrahydrofuran (50 ml) under argon. The mixture was refluxed for 3 h, and worked up, and the residue was chromatographed on silica gel.

Other reduction procedures give the same products but with smaller yields. Refluxing of 1,2,2-triphenylvinyl phenyl sulphone for 3 h with LiAlH₄ gives the expected 1,2,2-triphenylethylene in 40% yield. The use of a $LiAlH_4$ -CuCl₂ (4:8) mixture³ under the same conditions increases the yield to ca. 65%.

This work was supported by a grant from C.N.R., Rome.

(Received, 13th March 1973; Com. 343.)

¹ V. Pascali, N. Tangari, and A. Umani-Ronchi, J.C.S. Perkin I, in the press.; A. Bongini, V. Pascali, R. Pescara, and A. Umani-Ronchi, unpublished results.

² E. J. Corey and M. Chaykovsky, J. Amer. Chem. Soc., 1965, 87, 1345. ³ T. Mukaiyama, K. Narasaka, K. Maekawa, and M. Furusato, Bull. Chem. Soc. Japan, 1971, 44, 2285.

phenyl-1-phenylvinyl phenyl sulphone gave exclusively the corresponding *E*-isomers.