# Crystal and Molecular Structure of trans-Dichlorobis(hexaborane-10)platinum(iI) 

By James P. Brennan and Riley Schaeffer*<br>(Department of Chemistry, Indiana University, Bloomington, Indiana 47401)<br>and A. Davison and S. S. Wreford<br>(Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Summary $\left(\mathrm{B}_{6} \mathrm{H}_{10}\right)_{2} \mathrm{PtCl}_{2}$ is a trans-square-planar complex with the platinum bridge-bonded to the unique (4,5position) basal boron atoms in each of the $\mathrm{B}_{6} \mathrm{H}_{10}$ ligands; the bridged $\mathrm{B}-\mathrm{B}$ bond is nearly perpendicular to the $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ axis.

Davison et al. ${ }^{1}$ recently reported the synthesis of $\mu-\mathrm{Fe}(\mathrm{CO})_{4}{ }^{-}$ $\mathrm{B}_{6} \mathrm{H}_{10}$ and postulated a 4,5 -bridged structure. Work at Indiana had given similar results but the crystals obtained proved to be crystallographically disordered.


Figure. Molecular structure of $\left(\mathrm{B}_{\mathbf{6}} \mathrm{H}_{10}\right)_{\mathbf{2}} \mathrm{PtCl}_{2} . \quad \mathrm{Pt}-\mathrm{Cl}=2 \cdot 313$ (3), $\mathrm{Pt}-\mathrm{B}=2.27(2) \AA$, all $\mathrm{B}-\mathrm{B}$ distances $=1.82 \pm 0.05 \AA$; angles about boron $=60 \pm 2^{\circ}$; internal angles of basal B atoms $=$ $108 \pm 2^{\circ}$.

The structure of an analogue, $\left(\mathrm{B}_{6} \mathrm{H}_{10}\right)_{2} \mathrm{PtCl}_{2}$, has been determined by single-crystal $X$-ray techniques. The complex was prepared by the reaction of $\mathrm{B}_{6} \mathrm{H}_{10}$ with $\left.\mathrm{K}\left[\eta-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{PtCl}_{3}\right]$ and formed yellow needles from ( $-20^{\circ}$ ) toluene-hexane $(2: 5 \mathrm{v} / \mathrm{v})$. Although the crystals are unstable to air at room temperature a complete set of diffraction data was collected at $-170^{\circ}$ in a nitrogen-
vapour cooling system. ${ }^{2}$ The crystal showed no apparent damage from the $X$-ray beam and three orthogonal standards were constant to $\pm 2.5 \%$.

Crystal data: $\mathrm{B}_{6} \mathrm{H}_{10} \mathrm{PtCl}_{8}$, monoclinic, space group $P 2_{1 / n}, a$ $=8.095(2), b=11.144(2), c=7.796(2) \AA, \beta=93.9(1)^{\circ}, Z=$ 2. Diffraction data were collected with a Picker FACS-I automated diffractometer using Mo- $K_{\alpha}$ radiation and a graphite monochromator. Absorption and LP corrections were applied and of the 2451 reflections collected with $2 \theta \leqslant 60^{\circ} 1036$ out of a unique set of 2167 were judged significant $[I \geqslant 2 \cdot 33 \sigma(I)]$ and were used in the refinement, which has proceeded to a final $R$ value of $\mathbf{4} \cdot \mathbf{2 6 \%}$.

The molecular structure is shown in the Figure. The two $\mathrm{B}_{6}$ units are icosahedral, with platinum bridging the unique 4,5 -position in both ligands. The boron atoms bonded to platinum are nearly perpendicular to the $\mathrm{Cl}-$ $\mathrm{Pt}-\mathrm{Cl}$ axis. The structure is best viewed as trans-planar-co-ordination about Pt with the centres of the $\mathrm{B}(4)-\mathrm{B}(5)$ vectors occupying two co-ordination sites.

Although the hydrogens have not been located, the $\mathrm{Pt}-\mathrm{B}$ distances compare favourably to those found in $\left[\mathrm{Me}_{2} \mathrm{PhP}_{2} \mathrm{PtB}_{3} \mathrm{H}_{7}(2 \cdot 4-2 \cdot 13 \AA)^{3}\right.$ and $\left[\mathrm{Et}_{3} \mathrm{P}\right]_{2} \mathrm{Pt}(\mathrm{H}) \mathrm{B}_{9} \mathrm{H}_{10^{-}}$ $\mathrm{S}(2 \cdot 20-2 \cdot 25 \AA) .{ }^{4} \quad \mathrm{Pt}-\mathrm{H}-\mathrm{B}$ bonding is thus unlikely. The most noteworthy feature of the $\mathrm{B}_{6}$ fragment is the lengthening of the unusually short ( $1 \cdot 6 \AA$ ) $\mathrm{B}(4)-\mathrm{B}(5)$ distance found ${ }^{5}$ in uncomplexed $\mathrm{B}_{6} \mathrm{H}_{10}$ to a value typical of $\mathrm{B}-\mathrm{B}$ distances in triangulated polyhedral boranes. ${ }^{6}$ Each set of basal borons is tilted toward a chlorine such that the molecule has idealized $C_{2 h}$ symmetry.
The authors acknowledge the support of the National Science Foundation.
(Received, 2nd April 1973; Com. 451.)

[^0]
[^0]:    ${ }^{1}$ A. Davison, D. D. Traficante, and S. S. Wreford, J.C.S. Chem. Comm., 1972, 1155.
    ${ }^{2}$ J. C. Huffman, J. M. Mueller, W. E. Streib, unpublished work.
    ${ }_{4}^{3}$ L. J. Guggenberger, A. R. Kane, and E. L. Muetterties, J. Amer. Chem. Soc., 1972, 94, 5665.
    ${ }^{4}$ A. R. Kane, L. J. Guggenberger, and E. L. Muetterties, J. Amer. Chem. Soc., 1970, 92, 2571.
    ${ }^{5}$ K. Eriks, W. N. Lipscomb, and R. Schaeffer, J. Chem. Phys., 1954, 22, 754; F. L. Hirschfeld, K. Eriks, R. E. Dickerson, E. L. Lippert, jun., and W. N. Lipscomb, ibid., 1958, 28, 56.
    ${ }^{6}$ W. N. Lipscomb, ‘Boron Hydrides,' Benjamin, New York, 1963.

