Crystal and Molecular Structure of a Cationic Sodium Complex: the Sodium Tetraphenylborate Adduct of *NN*'-Ethylenebis(salicylideneiminato)cobalt(II). Cobalt(II), Nickel(II), and Copper(II) Complexes of Quadridentate Schiff Bases as Complexing Agents for Lithium, Sodium, and Ammonium Cations

By CARLO FLORIANI* and FAUSTO CALDERAZZO

(Istituto di Chimica Generale ed Inorganica, University of Pisa, 56100 Pisa, Italy)

and LUCIO RANDACCIO

(Istituto Chimico, University of Trieste, 34127 Trieste, Italy)

Summary The crystal and molecular structure of a sodium complex derived from NN'-ethylenebis(salicylideneiminato)cobalt(II) and sodium tetraphenylborate is reported together with several other alkali metals and ammonium cations adducts.

The possibility for NN'-ethylenebis(salicylideneiminato)metal(II) complexes, hereinafter abbreviated as M(salen), to co-ordinate to transition¹⁻⁴ and non-transition elements⁵⁻⁸ is known. We now report the sodium tetraphenylborate adducts of Co(salen) (red), Ni(salen) (orange) and Cu(salen) (violetblue) of formula $[M(salen)]_2$ NaBPh₄,2THF, prepared from the components in tetrahydrofuran (THF). The three sodium tetraphenylborate adducts are isomorphous.

The molecular structure of $[Co(salen)]_2$, NaBPh₄, 2THF has been solved by X-ray diffraction data analysis. The crystals are monoclinic, space group $P2_1/c$, with a = 14.415, b = 14.329, and c = 27.897Å and $\beta = 98.0^{\circ}$, $D_m = 1.330$ g cm⁻³ (flotation), $D_c = 1.324$ g cm⁻³ with four units [Co-

 $(salen)]_2$, Na, $(THF)_2$, BPh₄, $\mu = 6.8$ cm⁻¹ (for Mo- K_α). Siemens diffractometer measurements of intensities were carried out using a crystal sealed in a thin capillary.

The structure was solved from 3771 independent nonzero ($I>4\sigma_{
m T}$) reflections with $heta\leqslant 25^\circ$, by Patterson and Fourier methods and refined by block-diagonal leastsquares methods to the present *R*-value of 0.083.

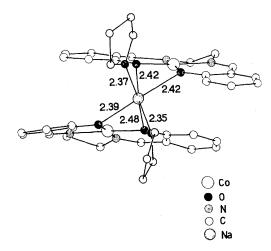


FIGURE. View of the [Co₂(salen)₂Na,(THF)₂]+ cation with some relevant bond distances.

The crystals consist of discrete [Co₂(salen)₂Na, (THF)₂]+ cations and $[BPh_4]^-$ anions. The tetraphenylborate anions, held together by phenyl-phenyl interactions, are arranged along planes perpendicular to the (101) planes and passing at z equal to 0 and 0.5. The complex cations are arranged in between these planes. The sodium cation has an approximately octahedral co-ordination, being surrounded by six oxygen atoms, two for each Co(salen) group [Na–O distances ranging from 2.391(9) to 2.482(9) Å] and two from the THF groups [Na-O distances 2.35(1) and 2.37(1) Å]. The THF groups are at two cis-positions of the distorted octahedron. The complex cation, of approximate C_2 symmetry, is shown in the Figure, where also some bond lengths of interest are indicated. The Co(salen) units are nearly planar, with a slight distortion towards an umbrella-shape of the type frequently encountered⁹ in M(salen) complexes. The THF

groups undergo high thermal motion (the thermal parameters of all the atoms are around 10 $Å^2$), in agreement with a 'pseudorotation' of the ring similar to that of cyclopentane. The five-membered rings are not planar and their atoms are within ± 0.15 Å of their mean plane. The structural parameters of the [BPh4]⁻ anion are in good agreement with those recently reported.¹⁰ The mean B-C bond length is 1.64(1) Å, and the mean C–C bond length is 1.40(1) Å. This is the first well authenticated example of an alkali-metal cation complexed to a co-ordination compound, to be compared with both the 'complexed ion-pairs'8 and the recently reported¹¹ 'cryptates'.

The following adducts were similarly prepared: [3-MeO--Co(salen)]₂,NaBPh₄,2THF (I), [M(salen)]₂,NH₄SCN (II; M = Ni, Cu), [Co(salen)]₂, NH_4SCN , THF (III), 3-MeO-Co(salen), NH_4SCN (IV), M(salen), LiX, THF (V; M=Co; X = Br, I, SCN; M = Cu;X = SCN),3-MeO·Co(salen). LiBr (VI), and 3-MeO·Co(salen), LiSCN, THF (VII).

Satisfactory analytical results were obtained for all the compounds reported in this paper. The magnetic moment of (I) $[\mu_{eff} = 2.31 \text{ B.M. at } 293 \text{ K}]$ suggests no fundamental change of stereochemistry around the central metal atom. This is in agreement with a structure for (I) similar to that found for the M(salen), NaBPh₄ adducts.

The ammonium derivatives (II)-(V) and (VII) show C-N i.r. stretching vibrations substantially unchanged with respect to NH₄SCN. This suggests that the SCN group is not co-ordinated to the central metal atom. Ammonium cryptates have not been isolated¹¹ as yet, whereas a methylammonium 'complexed ion-pair' with NN'-ethylenebis-(acetylacetoneiminato)copper(11) and perchlorate as counterion is known.13

We feel that, in the presence of a potentially co-ordinating anion, the decision between the 'complexed ion-pair' and the co-ordination of the anion to the central metal atom may depend on very delicate energetic factors. It is worth mentioning that compound (VI) has a magnetic moment $\mu_{eff} = 3.69$ B.M. at 293 K, substantially independent of temperature down to 120 K ($\theta = 40^{\circ}$) to be compared with the magnetic moment $\mu_{eff} = 3.70$ B.M. at 297 K found¹⁴ for the pyridine adducts of 3-MeO-Co(salen), in which the central cobalt atom is almost certainly fiveco-ordinate. In view of this, we suggest that in compound (VI) the halide is co-ordinated to cobalt.

Support from the Italian National Research Council (C.N.R., Rome) is acknowledged.

(Received, 16th March 1973; Com. 358.)

- ¹ D. Hall and T. N. Waters, *J. Chem. Soc.*, 1960, 2644. ² E. N. Baker, D. Hall, A. J. McKinnon, and T. N. Waters, *Chem. Comm.*, 1967, 134.
- S. Bruckner, M. Calligaris, G. Nardin, and L. Randaccio, Acta Cryst., 1969, B25, 1671.
 R. DeIasi, L. S. Holt, and B. Post, Inorg. Chem., 1971, 10, 1498.

- ⁶ K. Derasi, L. S. Holt, and B. Post, *Inorg. Chem.*, 1971, 10, 1453.
 ⁶ M. D. Hobday and T. D. Smith, *J. Chem. Soc.* (A), 1971, 1453.
 ⁶ M. D. Hobday and T. D. Smith, *J. Chem. Soc.* (A), 1971, 3424.
 ⁷ S. J. Gruber, C. M. Harris, and E. Sinn, *J. Inorg. Nuclear Chem.*, 1968, 30, 1805.
 ⁸ G. H. W. Milburn, M. R. Truter, and B. L. Vickery, *Chem. Comm.*, 1968, 1188.
 ⁹ M. Calligaris, G. Nardin, and L. Randaccio, *Coordination Chem. Rev.*, 1972, 7, 385.
 ¹⁰ M. Di Vaira and A. Bianchi Orlandini, *J.C.S. Dalton*, 1972, 1704.
 ¹¹ R. Districh, J. M. Lohn, and L. R. Schurger, *Tetrahedron Letters*, 1969, 2889 and reference.
- ¹¹ B. Dietrich, J. M. Lehn, and J. P. Sauvage, *Tetrahedron Letters*, 1969, 2889 and references therein.
- ¹² A. Earnshaw, P. C. Hewlett, E. A. King, and L. F. Larkworthy, J. Chem. Soc. (A), 1968, 241.
 ¹³ E. N. Baker, D. Hall, and T. N. Waters, J. Chem. Soc. (A), 1970, 396.
 ¹⁴ C. Floriani and F. Calderazzo, J. Chem. Soc. (A), 1969, 946.