Effect of N-Alkylation on the Position of Conformational Equilibrium in cis-Decahydroquinoline

By HAROLD BOOTH* and D. VAUGHAN GRIFFITHS

(Department of Chemistry, University of Nottingham, Nottingham NG7 2RD)

Summary ¹H, ¹³C, and ¹⁹F Magnetic resonance studies of LOW-TEMPERATURE n.m.r. studies of several N-substituted CD_2CF_3 .

N-substituted cis-decahydroquinolines show that the cis-decahydroquinolines (1) \rightleftharpoons (2) have given the proportions type (2) conformation is preferred for substituents H and of conformations listed in Table 1. Carbon-13 shifts of CH_3 , but that type (1) is preferred for CD_2CH_3 and (1) \Rightarrow (2) are given in Table 2 or have been reported (R = H); assignments were based on off-resonance experiments

and shift calculations. That the processes being slowed at low temperatures are ring inversion processes is confirmed

		TABLE I		
			Temp.	
R	%(1)	$\frac{2}{2}$	(<i>t</i> /°Ĉ)	Spectrum
н	(Minor)	(Major)	+25	¹ H(CW)
н	7	93	-40	¹³ C (FT)
CH,	30	70	-50	¹⁸ C (FT)
CD ₂ CH ₃	80	20	-63	¹ H (CW)
CD ₂ CH ₃	86	14	55	¹⁸ C (FT)
CD ₂ CF ₃	(Major)	(Minor)	+25	^{1}H (CW)
CH ₂ CF ₂	84	16	-65	¹⁸ C (FT)
CH,CF,	83	17	-60	¹⁹ F (CW)

by the insensitivity to temperature variation of the spectra of the related trans-fused systems. Moreover, a full lineshape analysis on a series of ¹⁹F spectra of $(1 \rightleftharpoons 2; R = CH_2$ - CF_3) recorded between -23 and +39 °C, gives E_{act} as $63.5 \text{ kJ} \text{ mol}^{-1}$, a value similar to published values for cisdecalin derivatives.2,3

- ¹ H. Booth and (in part) D. V. Griffiths, J.C.S. Perkin II, 1973, 842.
 ² J. T. Gerig and J. D. Roberts, J. Amer. Chem. Soc., 1966, 88, 2791.
 ³ D. K. Dalling, D. M. Grant, and L. F. Johnson, J. Amer. Chem. Soc., 1971, 93, 3678.

The results show an increasing preference for conformation of type (1) on proceeding along the series $R = H, CH_s$, CD_2CH_3 (= CD_2CF_3). This is possibly due to ring puckering around the nitrogen, itself a consequence of the smaller C-N bond distance relative to the C-C bond distance. The resulting Newman projections, for views along the N-C(8a) bond, are (3) and (4), for conformations (1) and (2) respectively. Thus, with R = H, the repulsive interaction which dominates the situation is C(2)-C(8) in (3), leading to a

TABLE 2

Carbon-13 shifts (p.p.m. from Me₄Si) for ring carbons in *cis*-decahydroquinolines (1) \rightleftharpoons (2) (CDCl₃).

Conformation (1) R			Conformation (2) R		
CH,	CD ₂ CH ₂	CH ₂ CF ₃	CH,	CD ₂ CH ₈	CH ₂ CF
47.4	$4\overline{6}\cdot 2$	47.1	58·3	$5\overline{2}\cdot 8$	56 ∙3 ँ
$25 \cdot 3$	$25 \cdot 9$	$25 \cdot 4$	21.6	21.9	21.7
$22 \cdot 8$	$23 \cdot 9$	$22 \cdot 8$	3 0·8	$29 \cdot 1$	29·3
31.6	31.9	31.4	$26 \cdot 3$	*	*
20.9	$21 \cdot 1$	20.6	$26 \cdot 1$	26.6	$23 \cdot 2$
25.7	25.7	$25 \cdot 2$	19.6	20.9	19.5
15.6	16.0	18.5	29.3	31.3	*
60.6	$57 \cdot 9$	61.9	$63 \cdot 4$	57.2	57.9
36 ·0	36.0	$35 \cdot 1$	36·3	36.8	3 6·7
	Con CH ₃ 47·4 25·3 22·8 31·6 20·9 25·7 15·6 60·6 36·0	$\begin{array}{c c} Conformation \\ R \\ \hline \\ CH_3 & CD_2CH_3 \\ 47\cdot4 & 46\cdot2 \\ 25\cdot3 & 25\cdot9 \\ 22\cdot8 & 23\cdot9 \\ 22\cdot8 & 23\cdot9 \\ 31\cdot6 & 31\cdot9 \\ 20\cdot9 & 21\cdot1 \\ 25\cdot7 & 25\cdot7 \\ 15\cdot6 & 16\cdot0 \\ 60\cdot6 & 57\cdot9 \\ 36\cdot0 & 36\cdot0 \\ \end{array}$	$\begin{array}{c c} \text{Conformation (1)} \\ R \\ \hline \\ \hline$	$\begin{array}{c cccc} Conformation (1) & Con \\ R & \\ \hline \\$	$\begin{array}{c ccccc} \text{Conformation (1)} & \text{Conformation} \\ R & R \\ \hline CH_3 & CD_2CH_3 & CH_2CF_3 & CH_3 & CD_2CH_3 \\ 47.4 & 46.2 & 47.1 & 58.3 & 52.8 \\ 25.3 & 25.9 & 25.4 & 21.6 & 21.9 \\ 22.8 & 23.9 & 22.8 & 30.8 & 29.1 \\ 31.6 & 31.9 & 31.4 & 26.3 & * \\ 20.9 & 21.1 & 20.6 & 26.1 & 26.6 \\ 25.7 & 25.7 & 25.2 & 19.6 & 20.9 \\ 15.6 & 16.0 & 18.5 & 29.3 & 31.3 \\ 60.6 & 57.9 & 61.9 & 63.4 & 57.2 \\ 36.0 & 36.0 & 35.1 & 36.3 & 36.8 \end{array}$

* Masked by other signals.

preference for (4). As R increases in size, the interaction R-C(8) in (4) eventually becomes dominant, leading to a preference for (3). However, the change in position of equilibrium, which accompanies the replacement of R = CH_a by $R = CD_2CH_a$ is unexpectedly abrupt.

We thank the S.R.C. for provision of funds in part for the purchase of a JEOL P.S. 100 pulsed spectrometer and NICOLET 1085 computer.

(Received, 30th May 1973; Com. 775.)