Formation of a Co-O₂ Complex by the Co-ordination of Free Superoxide Ion

By JUDITH ELLIS and J. M. PRATT*

(I.C.I. Limited, Corporate Laboratory, P.O. Box 11, The Heath, Runcorn, Cheshire)

and MICHAEL GREEN

(Department of Chemistry, University of York, Heslington, York YO1 5DD)

Summary The CoIII complex aquocobalamin (vitamin B_{12a}) reacts with solutions of O_2^- in dimethylformamide to give superoxocobalamin.

Both the bond-lengths and bond-angles of the $Co-O_2$ group as shown by X-ray analysis,¹ and the low values of the cobalt coupling constants of the e.s.r. spectra² indicate that the mononuclear complexes³ formed by the reaction of Co^{II} complexes with O₂ are better formulated as Co^{III} complexes with a superoxide (O₂⁻) ligand. This formulation suggests that one should also be able to prepare these complexes by simple ligand substitution reactions of the Co^{III} complex involving the co-ordination of free O₂⁻. We have, therefore, studied the reaction of O₂⁻ with aquocobalamin

(vitamin B₁₂₃) which, unlike most other Co^{III} complexes, can undergo rapid ligand substitution in the axial positions.⁴ Superoxocobalamin is, of course, formed by the usual reaction of O_2 with the Co^{II} complex, vitamin B_{12r} , at low temperature.5

Solutions of superoxide in dimethylformamide (DMF) were prepared by the electrochemical reduction of dissolved O₂.⁶ The DMF was distilled from K₂CO₃, stored over molecular sieve type 5A, and Bu₄NBF₄ added to give a 0.1M-solution of electrolyte. A stream of dry air was bubbled through 25-40 ml portions of the solution in a cell containing a Hg pool cathode, a Pt wire anode (separated by a frit), and a standard calomel reference electrode (separated by a bridge); reduction continued for ca. 4 h at 0.7-0.8 V and ca. 5 mA. The resultant yellowish solution gave an e.s.r. signal at -170 °C with g-values of 1.999, 2.004, and 2.032, which are typical of the superoxide anion.^{6,7} 0.5 ml samples of the solution held at -50 °C were treated with a small quantity (ca. 15 mg) of solid vitamin B_{128} , stirred until the solid dissolved, transferred to an e.s.r. tube, and frozen to -170 °C (all within ca. 30 s). The e.s.r.

¹G. A. Rodley and W. T. Robinson, Nature, 1972, 235, 438.

- ² H. Kon and N. E. Sharples, Spectroscopy Letters, 1968, 1 49. ³ For a recent list of references see: E. W. Abel J. M. Pratt, and R. Whelan, Inorg. Nuclear Chem. Letters, 1973, 9, 151.
- J. M. Fratt, 'Inorganic Chemistry of Vitamin B₁₂,' Academic Press, London, 1972, ch. 12.
 J. H. Bayston, N. K. King, F. D. Looney, and M. E. Winfield, J. Amer. Chem. Soc., 1969, 91, 2775.
- ⁶ M. E. Peover and B. S. White, Chem. Comm., 1965, 183; Electrochim. Acta., 1966, 11, 1061; D. L. Maricle and W. G. Hodgson, Analyt. Chem., 1965, 37, 1562. 7 J. E. Bennett, B. Mile, and A. Thomas, Trans. Faraday Soc., 1968, 64, 3020.
- ⁸ See, for example: S. Nakamura and I. Yamazaki, Biochim. Biophys. Acta, 1969, 189, 29.

$$Co_{II} + O_{a} \rightleftharpoons [Co_{III}O_{a}] \rightleftharpoons Co_{III} + O_{a}^{-}$$

The same complex can, therefore, be formed by the two different routes shown schematically above; we do not yet know the degree of reversibility of the second reaction. As far as we are aware, this reaction provides the first example of the co-ordination of free superoxide ion to give a detectable complex, not only by a Co^{III} ion, but by any transition-metal ion, with the possible exception of certain metal-containing enzymes.⁸ Its occurrence also provides a direct check on the validity of formulating these O2-adducts as Co^{III} superoxide complexes.

We thank Dr. J. Janata for help with the electrochemical experiments.

(Received, 15th August 1973; Com. 1183.)