Trigonal Pyramidal Five-co-ordinated Ni[®] Complex

By Carlo Mealli and Luigi Sacconi*

(Istituto di Chimica Generale e Inorganica, Università, Laboratorio CNR, Florence, Italy)

Summary An X-ray investigation of the complex NiN- $(C_2H_4PPh_2)_3$ shows that it is the first known complex to have trigonal pyramidal co-ordination.

The diamagnetic compound tris-(2-diphenylphosphinoethyl)aminenickel(0) is precipitated as red crystals which are fairly stable in air when sodium tetrahydroborate is added to an ethanol-acetone solution containing nickel(11)

FIGURE. Molecular structure of NiN(C2H4PPh2)3.

nitrate, and tris-(2-diphenylphosphinoethyl)amine under nitrogen. That the compound contains no hydridic hydrogen has been shown by reaction with iodine when no hydrogen is evolved, and also by reaction with 2 mol. equiv. of hydrogen chloride to produce 1 mol. equiv. of hydrogen and nickel(II); also there is no Ni-H band in the i.r. spectrum. The electronic spectrum shows bands at 450 and 515 nm.

The compound is unstable in dichloroethane or THF solution even under dry nitrogen.

An X-ray analysis of this compound has been undertaken. Crystal data: $C_{42}H_{42}NNiP_3$, monoclinic, space group C2/c, $a=24\cdot370(7)$, $b=11\cdot242(4)$, $c=27\cdot693(7)$ Å, $\beta=107\cdot65\cdot(16)^\circ$, Z=8.

Intensity measurements were collected on a Hilger diffractometer, and structure determination and refinement were carried out using 1864 independent reflections with $I > 3\sigma$ to an R = 0.059.

Bond lengths and angles about the nickel are: Ni–N, $2\cdot178(7)$; Ni–P(1), $2\cdot117(3)$; Ni–P(2), $2\cdot121(3)$; Ni–P(3), $2\cdot118(3)$ Å; P(1)–Ni–P(2), $120\cdot05(12)^\circ$; P(1)–Ni–P(3), $124\cdot54-(12)^\circ$; P(2)–Ni–P(3), $115\cdot39(12)^\circ$; P(1)–Ni–N, $90\cdot11(22)^\circ$; P(2)–Ni–N, $89\cdot35(22)^\circ$; P(3)–Ni–N, $90\cdot62(20)^\circ$.

No hydrogen atom of the phenyl group approaches the nickel atom at a distance shorter than $3\cdot30$ Å, and intermolecular contacts are never shorter than $3\cdot6$ Å.

The unique molecular shape of this complex, where, in particular, the N-Ni-P angles are practically equal to 90° , suggests the following comments concerning the electronic structure of the central nickel atom: (a) the EAN is equal to 36; (b) five localized electron-pairs are present in the valence shell of the nickel atom. These are directed from the central atom to the vertices of a trigonal bipyramid. Four of these pairs, the three occupying the equatorial positions and the fourth which occupies one of the axial positions, are σ -bonding. The fifth is a non-bonding pair which occupies the other axial position.

(Received, 3rd August 1973; Com. 1123.)