Trigonal Pyramidal Five-co-ordinated Ni^{0} Complex

By Carlo Mealli and Luigi Sacconi*
(Istituto di Chimica Generale e Inorganica, Università, Laboratorio CNR, Flovence, Italy)

Summary An X-ray investigation of the complex NiN$\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)_{3}$ shows that it is the first known complex to have trigonal pyramidal co-ordination.

The diamagnetic compound tris-(2-diphenylphosphinoethyl)aminenickel(0) is precipitated as red crystals which are fairly stable in air when sodium tetrahydroborate is added to an ethanol-acetone solution containing nickel(iI)

Figure. Molecular structure of $\mathrm{NiN}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)_{3}$. nitrate, and tris-(2-diphenylphosphinoethyl)amine under nitrogen. That the compound contains no hydridic hydrogen has been shown by reaction with iodine when no hydrogen is evolved, and also by reaction with 2 mol . equiv. of hydrogen chloride to produce 1 mol . equiv. of hydrogen and nickel(II); also there is no $\mathrm{Ni}-\mathrm{H}$ band in the i.r. spectrum. The electronic spectrum shows bands at 450 and 515 nm .

The compound is unstable in dichloroethane or THF solution even under dry nitrogen.

An X-ray analysis of this compound has been undertaken. Crystal data: $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{NNiP}_{3}$, monoclinic, space group $\mathrm{C} 2 / c$, $a=24 \cdot 370(7), b=11 \cdot 242(4), c=27 \cdot 693(7) \AA, \beta=107 \cdot 65-$ $(16)^{\circ}, Z=8$.

Intensity measurements were collected on a Hilger diffractometer, and structure determination and refinement were carried out using 1864 independent reflections with $I>3 \sigma$ to an $R=0.059$.
Bond lengths and angles about the nickel are: $\mathrm{Ni}-\mathrm{N}$, $2.178(7)$; $\mathrm{Ni}-\mathrm{P}(1), 2.117(3)$; $\mathrm{Ni}-\mathrm{P}(2), 2.121(3)$; $\mathrm{Ni}-\mathrm{P}(3)$, $2 \cdot 118(3) \AA ; \mathrm{P}(1)-\mathrm{Ni}-\mathrm{P}(2), 120 \cdot 05(12)^{\circ} ; \mathrm{P}(1)-\mathrm{Ni}-\mathrm{P}(3), 124 \cdot 54-$ $(12)^{\circ} ; \mathrm{P}(2)-\mathrm{Ni}-\mathrm{P}(3), 115.39(12)^{\circ} ; \mathrm{P}(1)-\mathrm{Ni}-\mathrm{N}, 90.11(22)^{\circ}$; $\mathrm{P}(2)-\mathrm{Ni}-\mathrm{N}, 89.35(22)^{\circ} ; \mathrm{P}(3)-\mathrm{Ni}-\mathrm{N}, 90 \cdot 62(20)^{\circ}$.

No hydrogen atom of the phenyl group approaches the nickel atom at a distance shorter than $3.30 \AA$, and intermolecular contacts are never shorter than $3 \cdot 6 \AA$.

The unique molecular shape of this complex, where, in particular, the $\mathrm{N}-\mathrm{Ni}-\mathrm{P}$ angles are practically equal to 90°, suggests the following comments concerning the electronic structure of the central nickel atom: (a) the EAN is equal to 36 ; (b) five localized electron-pairs are present in the valence shell of the nickel atom. These are directed from the central atom to the vertices of a trigonal bipyramid. Four of these pairs, the three occupying the equatorial positions and the fourth which occupies one of the axial positions, are σ-bonding. The fifth is a non-bonding pair which occupies the other axial position.
(Received, 3rd August 1973; Com. 1123.)

