Preparation of Electron-rich Heteroatom-containing Boranes

By Allen R. Siedle and Lee J. Todd*

(Department of Chemistry, Indiana University, Bloomington, Indiana 47401)

Summary The syntheses of $B_9C_2H_{11}AsPh$ and $B_8H_8As_2S$ are described; these are the first examples of a new class of electron-rich heteroatom-containing boranes.

REDUCTION of *closo*-carboranes with sodium naphthalide in a suitable solvent forms the synthetically useful, electronrich $B_n C_2 H_{n+2}^{2-}$ ions (n = 6-10).¹ We report here our initial studies on a new class of neutral heteroatom analogues of the electron-rich $B_9 C_2 H_{11}^{2-}$ and $B_{10} C_2 H_{12}^{2-}$ ions Formally, a BH unit in $B_{10} C_2 H_{12}^{2-}$ can be replaced with AsR²⁺

FIGURE. Proposed structure of B₈H₈As₂S.

to generate the isoelectronic but neutral molecule, $B_9C_2H_{11}$ -AsR. Thus, addition of phenyldichloroarsine to a suspension in toluene of $Na_2(1,2-B_9C_2H_{11})$ afforded yellow, sublimable $B_9C_2H_{11}$ AsPh (I), m.p. 125—127°, in low yield.

The high-resolution mass spectrum of (I) had a cut-off at m/e 286·1288 corresponding to the ${}^{12}C_{8}{}^{11}H_{16}{}^{75}As^{11}B_{9}{}^{+}$ ion (calculated m/e 286·1304). The CC'-dimethyl analogue, $B_{9}H_{9}C_{2}Me_{2}AsPh$, m.p. 120—121°, was also prepared and characterized.[†] The room temperature ${}^{11}B$ n.m.r. spectrum of (I) was unexpectedly simple containing doublet resonances at $-5\cdot2$, $-3\cdot1$, $+0\cdot8$, $+4\cdot0$, $+13\cdot9$, and $+16\cdot9$ p.p.m. (BF₃,OEt₂ = 0 p.p.m.) with relative areas 1:2:1: 2:2:1 respectively. The ¹H n.m.r. spectrum at room temperature of (I) [(CD₃)₂CO] contained one broad singlet (2H) at τ 5·77 due to the carborane CH protons. At -40° , it showed two broad singlets at τ 5·55 and 5·93. This suggests that (I) is fluxional at room temperature as is the similar *nido*-molecule Me₂AlB₉C₂H₁₂.²

We have found that reaction of $Cs_2B_{10}H_{14}$ with excess of arsenic trichloride and triethylamine results in the unusual insertion of two arsenic atoms into the boron cage to form the known molecule, 1,2- $B_{10}H_{10}As_2$.³ A similar reaction occurs between $CsB_9H_{12}S$, arsenic trichloride, and triethylamine in acetonitrile solution to give the white, sublimable, air-sensitive $B_8H_8As_2S$ (II) in low yield. The mass spectrum of (II) had a cut-off at m/e 278 corresponding to the ${}^{11}B_8{}^{1}H_8{}^{75}As_2{}^{32}S^+$ parent ion. The ${}^{11}B$ n.m.r. spectrum of (II) contained doublets at $-9{\cdot}8$, $-7{\cdot}4$, $-1{\cdot}3$, $+0{\cdot}4$, and $+30{\cdot}3$ p.p.m. with relative areas 2:1:2:2:1 respectively. This spectral pattern is consistent with the *nido*-structure shown in the Figure. Compound (II) is isoelectronic with the electron-rich $B_9C_2H_{11}^{2-}$ ion which is also believed to have a *nido*-structure similar to that in the Figure.

This work was supported by the National Science Foundation.

(Received, 14th September 1973; Com. 1281.)

† Satisfactory elemental analyses were obtained for the three new compounds described here.

- ¹G. B. Dunks and M. F. Hawthorne, Accounts Chem. Res., 1973, 6, 124.
- ² D. A. Young, R. J. Wiersema, and M. F. Hawthorne, J. Amer. Chem. Soc., 1971, 93, 5687.
- ³ J. L. Little and S. Pao, Abstract of the 156th Natl. Amer. Chem. Soc. Meeting, April 1973, INOR-54.