σ-Bonded Dioxygen. X-Ray Crystal Structure of [NEt₄]₃[Co(CN)₅(O₂)],5H₂O

By LEO D. BROWN and KENNETH N. RAYMOND

(Department of Chemistry, University of California, Berkeley, California 94720)

Summary The crystal and molecular structure of a dioxygen adduct of $[Co(CN)_5]^{3-}$ has been determined, the complex is best formulated as a nearly linear superoxide complex of Co^{III} with a Co-O-O angle of 175°. BECAUSE of the role played in biological oxygen transport, the mode of bonding of dioxygen in transition-metal complexes has been studied for many years. The resolution of the X-ray diffraction analyses of the oxygen-transport proteins oxymyoglobin and oxyhaemoglobin is not sufficient to determine the mode of bonding of dioxygen to the iron atom.¹ The suggested mode of bonding has ranged from the linear σ Fe–O–O structure (I) first proposed by Pauling²

to the π Fe $\leftarrow \bigcirc_{O}^{O}$ structure (II) proposed by Griffith³ or the

superoxide structure proposed by Weiss.⁴ Pauling⁵ subsequently proposed a bent σ structure (III) with an Fe–O–O

FIGURE. Structure of the anion in [NEt₄]₃[Co(CN)₅(O₂)], 5H₂O.

bond angle of 120° . Only recently dioxygen complexes of iron in model compounds have been prepared,⁶ although there are many examples of stable O₂ adducts of low-spin Co^{II} complexes, and the structures of two such adducts have been reported recently.⁷ In both cases the Co–O–O

¹ H. C. Watson and C. L. Nobbs, Colleq. Ges. Biol. Chemie, 1968, 19, 37.

- ² L. Pauling and C. D. Coryell, Proc. Nat. Acad. Sci. U.S.A., 1936, 22, 210.
- ³ J. S. Griffith, Proc. Roy. Soc., 1956, A, 235, 23.
- ⁴ J. J. Weiss, Nature, 1964, 202, 83.
- ⁵ L. Pauling, Nature, 1964, 203, 182.
- ⁶ J. P. Collman, R. R. Gagne, T. R. Halbert, J. Marchon, and C. A. Reed, J. Amer. Chem. Soc., 1973, 95, 7868.

⁷ (a) G. A. Rodley and W. T. Robinson, Nature, 1972, 235, 438; (b) J. P. Collman, H. Takaya, B. Winbler, L. Libit, S. S. Koon, G. A. Rodley, and W. T. Robinson, J. Amer. Chem. Soc., 1973, 95, 1656.

- ⁸ J. P. Collman and W. T. Robinson, Chem. Eng. News, 1974, 20.
- ⁹ B. M. Hoffman and D. H. Petering, Proc. Nat. Acad. Sci. U.S.A., 1970, 67, 637.
- ¹⁰ D. A. White, A. J. Solodar, and M. M. Baizer, Inorg. Chem., 1972, 11, 2160.
- ¹¹ W. R. Busing and H. A. Levy, Acta Cryst., 1964, 17, 142.
- ¹² B. M. Hoffman, D. L. Diemente, and F. Basolo, J. Amer. Chem. Soc., 1970, 92, 61.
- ¹³ J. W. Chien and L. C. Dickinson, Proc. Nat. Acad. Sci. U.S.A., 1972, 69, 2783.

angle is *ca.* 126°, structure (III). This also appears to be the geometry of the model iron complexes.⁸ The properties of oxycobaltmyoglobin and oxycobalthaemoglobin indicate that dioxygen binds to cobalt in the same way that it binds to iron in the native proteins.⁹ We report here a preliminary account of the structure of a simple yet unusual cobalt complex of dioxygen, the $[Co(CN)_5(O_2)]^{3-}$ anion.

Exposure to air of an anhydrous solution of $[NEt_4]_3[Co-(CN)_5]$ in dimethylformamide gave a red-brown solution of the $[Co(CN)_5(O_2)]^{3-}$ salt.¹⁰ After this was left in ambient atmosphere of moderate humidity red-brown crystals of $[NEt_4]_3[Co(CN)_5(O_2)],5H_2O$ deposited. Crystal data: space group $P2_1$, a = 10.444(4), b = 14.105(8), c = 14.392(6) Å, $\beta = 108.63(2)^\circ$, D_m (flotation) = 1.15 g cm⁻³, $D_c = 1.16$ g cm⁻³ for Z = 2. Intensity data were collected by automated diffractometer methods. Full-matrix least-squares refinement for the 2315 reflections with $F^2 > 3\sigma(F^2)$ gave R = 6.90% and $R_w = 7.33\%$. Several types of trial models in the refinement have shown conclusively that the structure is ordered.

The Figure shows the molecular geometry of the $[Co(CN)_{5}(O_{2})]^{3-ion}$. The mode of bonding of the O_{2} group is essentially linear, with a Co–O–O bond angle of $175(2)^{\circ}$. This bond angle and the O–O distance of $1\cdot13(2)$ Å are to some extent affected by the high thermal motion of the O_{2} group. The best estimate of the O–O distance, when corrected for thermal motion,¹¹ is $1\cdot2$ — $1\cdot3$ Å. The complex may be formulated as a low-spin octahedral Co^{III} complex of the superoxide anion, O_{2}^{-} . This is also consistent with the solution e.s.r. spectrum.^{10,12} The Co–O distance is $1\cdot93(2)$ Å. The five Co–C bond lengths average $1\cdot92(1)$ Å, with average C–N bond lengths of $1\cdot10(2)$ Å.

A recent report on the e.s.r. spectra of oxycobaltmyoglobin and oxycobalthaemoglobin proposed the π structure (II).¹³ The similarity of oxycobaltmyoglobin and [Co-(CN)₅(O₂)]³⁻, the structure reported here, and the preliminary information for the crystalline iron model compound⁸ instead suggest that dioxygen binds to all such Fe^{II} and Co^{II} complexes through only one oxygen atom.

This research was supported by the National Science Foundation. An Alfred P. Sloan Fellowship (1971-1973) to K.N.R. and an N.D.E.A. Fellowship to L.D.B. are gratefully acknowledged.

(Received, 19th February 1974; Com. 213.)