The Inherent Instability of 1,3-Dioxan and the Conformation of 1,3,7,9-Tetraoxacyclododecane

By Gerd Borgen and Johannes Dale*

(Kjemisk Institutt, Universitetet i Oslo, Oslo 3, Norway)

Summary The conformation of 1,3,7,9-tetraoxacyclododecane, formed by dimerization of 1,3-dioxan, is shown by n.m.r. spectroscopy to be 'square,' with both 1,3dioxa-groupings across corners, and to possess a very high conformational barrier (11 kcal/mol).

Most simple cyclic formals can be converted into polymers and higher cyclic oligomers,^{1,2} and the equilibrium thermodynamics have been established for the reaction monomerpolymer in the case of 1,3-dioxolan³ and 1,3-dioxepan.⁴ Because of the considerable entropy loss in oligomerizations and polymerizations, quite a large enthalpy lowering is needed to obtain a reasonably high 'ceiling temperature' $(\Delta G^{\circ} = 0)$.² For the above compounds ΔH° is -5.1 and -3.6 kcal/mol.

FIGURE 1. The conformations of dimethoxymethane (A), 1,3-dioxan (B), and 1,3,7,9-tetraoxacyclododecane (C). Right- and left-handed gauche bonds are indicated by + and - signs.

The six-membered ring, 1,3-dioxan, shows no tendency to polymerize by itself,^{2,4} and it might therefore seem natural to consider ring-strain as the driving force in the polymerization of other cyclic formals, and definitely this must be so in the case of medium rings,¹ particularly 1,3dioxacyclo-octane⁵ which gives cyclic dimer and polymers with remarkable ease. For cyclic formals lower than the eight-membered ring, there should, however, exist an additional driving force owing to the impossibility of accommodating the 1,3-dioxa-grouping in its very much preferred +gauche, +gauche (or - -) conformation (A, Figure 1), observed both in dimethoxymethane,⁶ medium rings,^{5,7} and large rings, ^{5,8} as well as in polyoxymethylene.⁹

Although 1,3-dioxan adopts a normal chair conformation, its dioxa-grouping is +gauche, -gauche (B), and also this ring should therefore possess some instability. In fact, it has been claimed that 1,3-dioxan takes part in copolymerizations,¹⁰ and that at -40° cyclic oligomers are formed.⁴ We have repeated the latter experiment and find that the crystalline product is not a mixture of cyclic dimer and trimer as reported,⁴ but the pure dimer, m.p. 102°, and that it is formed to some extent at -40° also when the equilibrium is not displaced by crystallization.

This cyclic bis-formal gives evidence of a particularly stable and rigid conformation. Thus, the i.r. spectrum in solution shows very sharp bands and is identical with the spectrum of the solid. The ¹H n.m.r. spectrum at 100 MHz (Figure 2) shows a temperature-dependent O- CH_2 -C signal

(δ 3.7), which broadens at -30° and splits into two signals (δ 4.0 and 3.4) below -60° ($T_c = -52^{\circ}$; ΔG^{\ddagger} ca. 11 kcal/mol), whereas the single line of the O-CH₂-O group (δ 4.53) undergoes no change. The C-CH₂-C signal (δ 1.8) is also

FIGURE 2. ¹H N.m.r. spectra at 100 MHz of 1,3,7,9-tetraoxacyclododecane at various temperatures in CHFCl₂ (top curve in CS₂).

unchanged except for a modification of its coupling pattern. Such a molecular symmetry can only correspond to the conformation shown in Figure 1 (C) with a two-fold symmetry axis passing through each pair of opposite corners, whereby geminal hydrogens on each corner become equivalent. \dagger

This conformation is of the same 'square,' non-diamondlattice type always encountered so far in 'saturated' 12membered rings: cyclododecane,^{11,12} cyclododecanoe,¹³ cyclododecane-1,7-dione,¹⁴ and 1,4,7,10-tetraoxacyclododecane.¹⁶ The two dioxa-groupings are not only favourably placed across opposite corners as in 1,3,8,10-tetraoxacyclotetradecane⁸ and 1,3,9,11-tetraoxacyclohexadecane,⁵ but give the ring an additional stabilization by interacting across the remaining corners with inner O-CH₂-C protons, in the manner found to be favoured in 1,5,9,13-tetraoxacyclohexadecane.^{5,15}

 \dagger Added in proof: The 2,2,8,8-tetramethyl derivative has since been prepared in a similar manner (m.p. 115°). Its n.m.r. spectrum shows an exactly analogous behaviour ($T_e = -5^\circ$).

The observed conformational barrier is very much higher than in comparable 12-membered rings: 7.3 kcal/mol for cyclododecane, 12 7.3 kcal/mol for cyclododecanone, 13 and 5.5 and 6.8 kcal/mol for the two processes in 1,4,7,10-tetraoxacyclododecane.¹⁶ It is inconceivable that replacement of CH₂ by oxygen should raise the absolute energy of any of the barriers on a complete interconversion path,¹⁷ since all have syn-eclipsing of one ring bond as the critical interaction.^{16,17} The only explanation is therefore that the energy of the conformation is lowered, presumably owing

We thank Norges Teknisk-Naturvitenskapelige Forskning sråd for financial support.

(Received, 3rd December 1973; Com. 1644.)

¹ J. W. Hill and W. H. Carothers, J. Amer. Chem. Soc., 1935, 57, 925.

- ⁴ J. W. Hin and W. H. Caloulers, J. Amer. Chem. 306, 31, 525.
 ⁵ F. S. Dainton and K. J. Ivin, *Quart. Rev.*, 1958, 12, 61.
 ⁸ P. H. Plesch and P. H. Westermann, J. Polym. Sci., 1968, C16, 3837; J. M. Andrews and J. A. Semlyen, Polymer, 1972, 13, 142;
 W. K. Bushfield, R. M. Lee, and D. Merigold, Makromol. Chem., 1972, 156, 183.
 ⁴ P. H. Plesch and P. H. Westermann, Polymer, 1969, 10, 105; W. K. Bushfeld and R. M. Lee, Makromol. Chem., 1973, 169, 199.
 ⁵ J. Dels and T. Elschand Chem. Science 1072, 27, 1819.

 - ⁵ J. Dale and T. Ekeland, Acta Chem. Scand., 1973, 27, 1519.

 - ⁶ E. E. Astrup, Acta Chem. Scand., 1971, 25, 1494. ⁷ F. A. L. Anet and P. J. Degen, J. Amer. Chem. Soc., 1972, 94, 1390; J. Dale, T. Ekeland, and J. Krane, *ibid.*, p. 1389.
- ⁸ I. W. Bassi, R. Scordamaglia and L. Fiore, J.C.S. Perkin II, 1972, 1726 ⁹ S. I. Mizushima and T. Shimanouchi, J. Amer. Chem. Soc., 1964, 86, 3521.
 ¹⁰ G. T. Vaala and R. B. Carlin, U.S.P., 1945, 2,385,661.
- ¹¹ J. D. Dunitz and H. M. M. Shearer, Helv. Chim. Acta, 1960, 43, 18.
- ¹² F. A. L. Anet, A. K. Cheng, and J. J. Wagner, J. Amer. Chem. Soc., 1972, 94, 9250.
 ¹³ F. A. L. Anet, A. K. Cheng, and J. Krane, J. Amer. Chem. Soc., 1973, 95, 7877.
 ¹⁴ T. Alvik, G. Borgen, and J. Dale, Acta Chem. Scand., 1972, 26, 1805.

- ¹⁵ G. Borgen and J. Dale, Chem. Comm. 1970, 1340.
 ¹⁶ F. A. L. Anet, J. Krane, J. Dale, K. Daasvatn, and P. O. Kristiansen, Acta Chem. Scand., 1973, 27, 3395.
- 17 J. Dale, Acta Chem. Scand., 1973, 27, 1130.