Effect of Xenon Moderator in Hot Hydrogen Reactions with Deuterium Hydride

By J. G. HAWKE* and J. MOIR

(School of Chemistry, Macquarie University, Sydney, Australia 2113)

Summary Kinetic-theory parameters are used to determine the extent to which the hot products from the reaction $T^* + HD$ undergo collisional decomposition; it is shown, using expressions developed recently by Baer and Amiel, that when xenon moderator is present, collisional decomposition could exceed $(70 \pm 12)\%$.

The question of the fate of translationally excited products of hot-atom reactions subsequent to their formation has been examined by a number of workers recently.¹⁻⁴ It has been suggested that collisional decomposition could have a significant effect on the yields of hot products. If collisional decomposition of the primary products of hot-atom reaction occurs, it should be greatest when the mass of the recoil atom is large or comparable to that of the product molecule and when the inert-gas moderator is a heavy atom.¹

To determine the extent to which HT, a common product from the reactions of recoil tritium with hydrocarbons, undergoes collisional decomposition, quartz ampoules containing xenon and deuterium hydride at a total pressure of 200 cm together with small amounts of iodine chloride as scavenger⁵ and He-3 were irradiated with neutrons to produce recoil tritium by the process ${}^{3}\text{He}(n,p){}^{3}\text{T}$. Techniques adopted for radiochemical analysis of the products have been described previously.^{6,7}

Kinetic-theory plots for the reaction of recoil tritium with HD in the presence of xenon are shown in the Figure. A least-squares analysis of the kinetic theory type-1 plot (Figure a) yields values of 0.14 ± 0.01 for the slope and an experimental value of α_{HD} , the average logarithmic energy decrement for tritium in a collision with a molecule of HD (6.3 ± 1.3) α_{xe} .

The above value for the slope together with a value for the slope when the moderator present is argon' giving more weight to the high moderator points $viz \ 0.12 \pm 0.01$, is substituted in the following expressions derived from the equation for the KT I asymptote given by Baer *et al.*^{2,8}

$$\frac{\text{KT } I \text{ slope (Xenon)}}{\text{KT } I \text{ slope (Argon)}} = \frac{\alpha_{Xe}}{\alpha_{Ar}} \frac{I_o(1 - J_{Ar})}{I_o(1 - J_{Xe})}$$
$$\text{now } \frac{\alpha_{Xe}}{\alpha_{Ar}} = \frac{1 - \beta_{Xe}}{1 - \beta_{Ar}}$$
$$\text{and } \beta = [(M - m)/(M + m)]^2$$

A value of 0.30 ± 0.12 is obtained for $(1 - J_{xe}):(1 - J_{Ar})$ where J_1 is the average probability of the hot molecules, in this case HT and DT, undergoing dissociation on collision with the moderator *i*. Since $J_{Ar} > 0$ it follows that $J_{Xe} >$ 0.70 ± 0.12 . The absence of curvature in the KT *I* plot⁸ corresponds to the case $J_m = J_r$.

The comparatively high reactivity of the recoil tritium system studied limits the range of moderator concentrations over which kinetic-theory analyses can be applied with any great validity⁹, and prevents the determination of individual decomposition probabilities by the methods adopted by either Spicer¹ or Alfassi *et al.*² However, the greater internal energy gained by HT as it becomes

FIGURE. Kinetic theory plots of (a) total and (b) individual product yields: system T + HD.

thermalized together with its lower bond energy suggests that the major portion of the collisional dissociation figure of $(70 \pm 12)\%$ for HT + DT can be attributed to the HT.

While not allowing individual decomposition probabilities to be obtained, the use of HD does allow a kinetic theory type-2 plot to be drawn and internal consistency checks applied to test the sensitivity of the present kinetic theory⁶ to collisional decomposition. From the intercepts of such a plot (Figure b) $I_{\rm HT}$, the reactivity integral for $\rm HT = (2.5 \pm 0.3)\alpha_{Xe}$ and $I_{\rm DT} = (4.2 \pm 0.4)\alpha_{Xe}$. The energy shadowing terms $K_{\rm HT}$ and $K_{\rm DT}$ equal $(3.6 \pm 0.7)\alpha_{Xe}^2$ and $(9.5 \pm 1.9)\alpha_{Xe}^2$ respectively. Poor correlation is obtained when these figures are substituted in the equations $I = \sum I_1$ and $\frac{1}{2}I^2 = \Sigma K_1$ used to test for internal consistency. Further, the failure of the two sets of data available on the reaction of recoil tritium with HD (Seewald's argon⁷ and our xenon) to give colinear k.t.-2 plots, as predicted by the kinetic theory, also reflects the sensitivity of the kinetic theory to collisional dissociation.

An isotope effect of 0.6 ± 0.2 , revealed by the ratio of $I_{\rm HT}$: $I_{\rm DT}$, is in accord with the computer study done by

- ¹ L. Spicer and R. Wolfgang, J. Chem. Phys., 1969, 50, 3467.
 ² Z. B. Alfassi, M. Baer and S. Amiel, J. Chem. Phys., 1971, 55, 3094.
 ³ D. J. Malcolme-Lawes, J. Chem. Phys., 1972, 57, 5522.
 ⁴ D. J. Malcolme-Lawes and D. S. Urch, J.C.S. Chem. Comm., 1973, 107.
 ⁵ L. Howles and B. Wolfgang, Badjachim Acta, 1070, 14, 1167.
- ⁵ J. Hawke and R. Wolfgang, Radiochim. Acta, 1970, 14, 116.
 ⁶ R. Wolfgang, Progr. Reaction Kinetics, 1965, 3, 99.
 ⁷ D. Seewald, Ph.D. thesis, Yale University, 1967.

- ⁸ M. Baer and S. Amiel, J. Chem. Phys., 1970, 53, 407.
 ⁹ R. M. Felder, J. Chem. Phys., 1967, 46, 3185.

Malcolme-Lawes of this system.³ This study suggests departures from the theoretical value of 1.1-1.2 would arise in a xenon moderated system, from significant dissociation of excited HT.

This work was supported by the Australian Institute of Nuclear Science and Engineering.

(Received, 10th December 1973; Com. 1665.)