Dianions of β -Keto-sulphoxides. A New General Synthesis of Vinyl Ketones

By PAUL A. GRIECO,* DENA BOXLER, and CHESTER S. POGONOWSKI (Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260)

Summary The dianion of the β -keto-sulphoxide (1) can be alkylated exclusively on the γ -carbon atom with a variety of alkyl halides; the resultant α -phenylsulphinyl ketones (3) undergo ready elimination of benzenesulphenic acid providing a new general route to alkyl vinyl ketones.

THE synthetic utility of dianions¹ derived from β -ketosulphoxides (e.g. phenylsulphinylacetone) for the construction of ketones, 1,4-diketones, aldols, and 1,5-dicarbonyl systems has recently been described.² We now report a general method for the synthesis of methyl vinyl ketone homologues (see Scheme and Table), providing useful reagents for the annelation of β -diketones and simple cyclic ketones. The method is based on our earlier observations² that the dianion of phenylsulphinylacetone undergoes exclusive γ -alkylation and on recent reports that α -phenylsulphinyl carbonyl systems undergo ready thermal elimination of benzenesulphenic acid.³

The required β -keto-sulphoxide (1) was prepared in very high overall yield by oxidation (periodate-aqueous MeOH)⁴ of its corresponding β -keto-sulphide which was synthesized from 3-bromobutan-2-one⁵ and C₆H₅SNa in absolute EtOH. The dianion (2) can be conveniently prepared by sequential treatment of (1) in tetrahydrofuran (THF) containing hexamethylphosphoramide (HMPA) with NaH and BuⁿLi. Addition of a variety of alkylating agents results in a ready reaction to give yields of γ -alkylated β -keto-sulphoxides (3) in the range 65—84%.

The following is a typical reaction sequence. To a suspension of NaH (1.65 mmol, washed with hexane) in

TABLE. Preparation of vinyl ketones from the β -keto-sulphoxide (1).

R-X				Yield (%) of (3)	Vinyl ketone R in (4)	Time/h	Temp. $(t/^{\circ}C)$	Yield
				/	H	16	75	` 80 ′
PhCH,Br				72	PhCH.	18	74	75
MeI				65	Me	22	74	78
Bu ⁿ I			• •	84	Bu ⁿ	23	70	78
Geranyl chloride CH ₂ Cl·CH : CClMe		••		71	Me ₂ C:CH·CH ₂ ·CH ₂ ·CMe:CHCH ₂	42	74	92
			••	70	MeCCl=CH·CH ₂	16	74	98

anhydrous THF (1.5 ml) at 0° under N₂ was added a solution of (1) (1.5 mmol) in THF (2.2 ml) containing HMPA (1 equiv.). After 20 min, BuⁿLi (1.65 mmol) was added and the mixture was stirred for an additional 20 min. Addition of PhCH₂Br (1.65 mmol), followed by warming to room temperature (30 min) and work-up afforded a 72% yield of (3; R = PhCH₂) after purification on silica gel.

Thermolysis of the α -phenylsulphinyl derivative (3; R = PhCH₂) (0.3 m in CCl₄) was carried out at *ca.* 74° under N₂ for 17 h. The reaction was quenched with NaHCO₃ solution and the crude product rapidly chromatographed on silica gel. The Table shows yields of this and other vinyl ketones; thermolysis of sulphoxides neat (120°) or in refluxing toluene gave only moderate yields. The ready availability of (1) coupled with the ability of dianions of β -keto-sulphoxides to undergo exclusive γ -alkylation, condensation with carbonyl systems, ring opening of epoxides, and Michael additions should provide a general route to vinyl ketones. Moreover, the elimination step is quite mild and should be compatible with a variety of functional groups.

We thank Eli Lilly and Company and acknowledge a Public Health Service Research Grant from the National Cancer Institute for generous support of this research. We thank Mr. N. Marinovic for experimental assistance.

(Received, 29th March 1974; Com. 359.)

¹ For the use of dianions of β -keto-phosphonates in organic synthesis see: P. A. Grieco and C. S. Pogonowski, J. Amer. Chem. Soc., 1973, 95, 3071; Synthesis, 1973, 425.

² P. A. Grieco and C. S. Pogonowski, J. Org. Chem., 1974, 39, 732; I. Kuwajima and H. Iwasawa, Tetrahedron Letters, 1974, 107.

⁸ B. M. Trost and T. N. Salzmann, J. Amer. Chem. Soc., 1973, 95, 6840; P. A. Grieco and J. J. Reap, Tetrahedron Letters, 1974, 1097. ⁴ C. R. Johnson and J. E. Keiser, Org. Synth., 1966, 46, 78.

⁶ M. Gaudry and A. Marquet, Bull. Soc. chim. France, 1969, 4169; M. Gaudry and A. Marquet, Tetrahedron, 1970, 26, 5611.