Thionitrosyl Complexes of Molybdenum

By J. CHATT and J. R. DILWORTH*

(A.R.C. Unit of Nitrogen Fixation, University of Sussex, Brighton BN1 9QJ)

Summary The molybdenum nitrido-complexes [MoN- $(S_2CNR_2)_3$] (R₂ = 2Me, 2Et, or $[CH_2]_5$) react with sulphur to give the thionitrosyl complexes [Mo(NS)(S₂CNR₂)₃], in high yield; the sulphur can be removed by tributylphosphine to regenerate the nitrido-complexes.

THIOCARBONYL complexes of transition metals have recently been prepared from thiocarbonyl dichloride¹ but no thionitrosyl complexes are known, although NS⁺ salts were reported in 1971² and its complexes could doubtless be prepared from them. We now report their preparation by the novel reaction of certain nitrido-complexes with sulphur as follows.

The nitrido-complexes $[MoN(S_2CNR_2)_3]$ (R₂ = 2Me,2Et, or [CH₂]₅) react with sulphur or propylene sulphide³ in refluxing methyl cyanide to give the thionitrosyl complexes $[Mo(NS)(S_2CNR_2)_3]$ in 80–90% yield. The complex $[Mo(NS)(S_2CNMe_2)_3]$ can also be prepared in ca. 50% yield by the reaction of $[MoO_2(S_2CNMe_2)_2]$ with trimethylsilyl azide in the presence of tetramethylthiuram disulphide. This reaction presumably proceeds by initial formation of a nitrido-complex which then reacts with sulphur originating from the sulphur ligands.

The thionitrosyls are orange-red, air-stable, crystalline solids, monomeric in 1,2-dichloroethane solution. The ¹H n.m.r. spectrum of [Mo(NS)(S₂CNMe₂)₃] in nitrobenzene at room temperature shows a 1:2:3 triplet (two overlapping doublets), consistent with a pentagonal bipyramidal structure with an apical NS. This triplet pattern is also observed at ca. 60° in the spectrum of the related complex, [Mo $(NO)(S_2CNMe_2)_3$ in nitrobenzene, but at room temperature further splitting into a 1:2:1:2 quartet occurs.⁴ The mass spectrum of [Mo(NS)(S2CNMe2)3] shows strong peaks around m/e 502 due to the parent ion, and also around m/e 456 corresponding to the formation of $[Mo(S_2CNMe_2)_3]^+$ by loss of NS. Appropriate peaks of metastable ions are also shown. The i.r. spectra of the thionitrosyls shows a very strong band at ca. 1100 cm⁻¹ assigned to v(N-S). Reaction of the thionitrosyls with tributylphosphine regenerates the nitrido-complexes in high yield, the reaction being monitored by disappearance of the N-S band at 1100 cm⁻¹ and appearance of $\nu(Mo \equiv N)$ at *ca*. 1020 cm⁻¹.

The cleavage of cyclo-octasulphur to give the thionitrosyls suggests that the nitride ligands in $[MoN(S_2CNR_2)_3]$ are highly nucleophilic. Neither of the rhenium complexes, [ReN(S₂CNEt₂)₂] or [ReCl₂N(PMe₂Ph)₃], reacts to give the thionitrosyl with sulphur under the above reaction conditions, but the latter is certainly sufficiently nucleophilic to form weak complexes with boron halides or the PtCl₂-(PEt₃) unit.⁵ On the other hand, the nitride ligand in $[MCl_3N(PMe_2Ph)_2]$ (M = Os or Ru) is definitely electrophilic, acting as an electron acceptor to form phosphiniminato-complexes with tertiary phosphines, e.g., [MCl₃ $(-N=PEt_2Ph)(PEt_2Ph)_2].^6$

It is interesting that the nucleophilicity of the nitride ligands in the above complexes appears to fall in the sequence Mo > Re > Os. Although the complexes from each Group are not strictly comparable, the trend in nucleophilicity is so marked that it may be general.

(Received, 17th April 1974; Com. 426.)

- ¹ B. Dombek and R. J. Angelici, J. Amer. Chem. Soc., 1973, 95, 7518, and references therein.
 ² O. Glemser and W. Koch, Angew. Chem. Internat. Edn., 1971, 10, 127.
 ⁸ W. Beck, W. Danzer, and G. Thiel, Angew. Chem., 1973, 85, 625.
 ⁴ R. Davis, M. N. S. Hill, B. F. G. Johnson, and K. H. Al-Obaidi, J. Chem. Soc. (A), 1971, 994.
 ⁵ J. Chatt and B. T. Heaton, Chem. Comm., 1968, 274.
- ⁶ W. P Griffith and D. Pawson, Inorg. Nuclear Chem. Letters, 1974, 10, 253.