Monohydrido-complexes of Platinum(II) Containing Metal—Carbon σ-Bonded Dicarba-closo-dodecaborane(12) Ligands

By Silvano Bresadola,* Bruno Longato, and Franco Morandini

(Centro di Studio sulla Stabilità e Reattività dei Composti di Coordinazione, C.N.R.-Istituto di Chimica Analitica, Università, Via Marzolo 1, 35100 Padova, Italy)

Summary Platinum(II) hydrido-carborane-complexes of the type cis- or trans- $(Et_3P)_2$ PtH(σ -carb) containing a metal-carbon σ -bond have been prepared and their hydrido-chemical shifts, coupling constants, and stretching frequencies have been determined.

In the course of our research on transition-metal complexes incorporating o- and m-carborane [1,2- and 1,7-dicarba-closo-dodecaborane(12), respectively] bonded through metal-carbon σ -bonds, we have prepared and characterized platinum(II) hydrido-complexes of the type cis- and trans-(Et₃P)₂PtH(σ -carb), where carb = 2-R-1,2-B₁₀C₂H₁₀ and 7-R-1,7-B₁₀C₂H₁₀ (R = H, Me, and Ph), which appear to be the first examples of this kind of complex. They were prepared according to equation (1) by the following procedure. Excess of 1-lithium-carborane² in Et₂O was

$$trans-(Et_3P)_2PtHCl + Li-carb \rightarrow \rightarrow cis- \text{ or } trans-(Et_3P)_2PtH(\sigma-carb) + LiCl$$
 (1)

treated under N₂ at 25° with a solution in Et₂O of trans-(Et₃P)₂PtHCl.³ The mixture was stirred for 30 min and the solvent was removed in vacuo. The crude products were washed with MeOH and recrystallized from CH₂Cl₂-MeOH giving 60—80% yields of pure, air-stable crystalline compounds (I)—(VII). Satisfactory analytical and molecular weight data were obtained for all the complexes. ¹H N.m.r. data for the hydrido-ligand together with Pt-H stretching frequencies are in the Table.

The ¹H n.m.r. data suggest a *cis*-configuration for complexes (I)—(IV) (dd structure) and a *trans*-configuration for complexes (V)—(VII) (triplet structure). The τ (PtH) values for the *trans*-complexes (V)—VII) are comparable

Table

Hydrido-chemical shifts, coupling constants, and stretching frequency for the complexes (Et₃P)₂PtH(σ-carb).

	σ -carb		cis or trans	$ au(\mathrm{PtH})^{\mathbf{a}}$	$J({ m PtH})/{ m Hz}$	$J(\mathrm{PH})/\mathrm{Hz}$	$\nu({\rm PtH})^d/{\rm cm}^{-1}$
(I)	$1,2-B_{10}C_2H_{11}$	 	cis	16·38b	968	$\left\{egin{array}{c} 186 \ 22 \cdot 2 \end{array} ight.$	2110
(II)	$1,7-B_{10}C_2H_{11}$	 	cis	15.78	952	$\begin{cases} 194 \\ 23 \cdot 3 \end{cases}$	2130
(III)	7-Me-1,7- $\mathrm{B_{10}C_2H_{10}}$	 	cis	15.66	953	$egin{cases} 194 \ 22 \cdot 8 \end{cases}$	2130
(IV)	$7\text{-Ph-1}, 7\text{-B}_{10}C_2H_{10}^-$	 	cis	15.94c	950	${195 \atop 22\cdot 1}$	2128
(V)	$2\text{-Me-1,}2\text{-B}_{10}\text{C}_{2}\text{H}_{10}^{-}$	 	trans	24.04	680	$\overline{19.9}$	2133
(VI)	2-Ph-1,2-B ₁₀ C ₂ H ₁₀	 	trans	24.71	691	20.5	2130
(VII)	7-Ph-1,7-B ₁₀ C ₂ H ₁₀ -	 	trans	23.92	664	20.1	2118e

a Measured in C₆H₈, except where stated, at 30°, Me₄Si as internal standard. b In CH₂Cl₂. c In CDCl₃. d In CCl₄. e In C₆H₆.

with those of the corresponding trans-hydridohalogenocomplexes, 4 whereas J(PtH) values in our case are generally smaller. A similar J(PtH) was found recently for the σ-cyclohexenyl hydrido-complex trans-(Ph₃P)₂PtH(σ-C₆H₉), $[\nu(PtH)(CH_2Cl_2) \ 1925 \ cm^{-1}, \ \tau(PtH) \ (CDCl_3) \ 15.46, \ J(PtH)$ 608 Hz]. It is noteworthy that the hydrido-carboranecomplexes obtained exhibit either cis- or trans-configuration, whereas all previously reported⁶ monohydrido-derivatives of platinum(II) containing two monodentate neutral ligands are exclusively trans.

(Received, 18th February 1974; Com. 207.)

- ¹ B. Longato and S. Bresadola, Atti Conv. Naz. Chim. Inorg., Firenze (Italy), 1973, A 38; S. Bresadola, A. Frigo, B. Longato, and G. Rigatti, Inorg. Chem., 1973, 12, 2788; S. Bresadola and B. Longato, ibid., 1974, 13, 539.

 ² D. Grafstein, J. Bobinsky, J. Dvorak, H. Smith, N. Schwartz, M. S. Cohen, and M. H. Fein, Inorg. Chem., 1963, 2, 1120; D. Grafstein and J. Dvorak, ibid., p. 1128.

- J. Chatt and B. L. Shaw, J. Chem. Soc., 1962, 5075.
 P. W. Atkins, J. C. Green, and M. L. H. Green, J. Chem. Soc. (A), 1968, 2275.
 M. A. Bennett, G. B. Robertson, P. D. Whimp, and T. Yoshida, J. Amer. Chem. Soc., 1973, 95, 3028.

⁶ H. D. Kaesz and R. B. Saillant, Chem. Rev., 1972, 72, 231.