## Bonding Mode of Thiocyanate in Palladium(11) Phosphite Complexes: X-Ray Structure of *trans*-Dithiocyanatobis(triphenyl phosphite)palladium(11)

By STEPHEN JACOBSON, YAU S. WONG, PETER C. CHIEH, and ARTHUR J. CARTY\* (Department of Chemistry, University of Waterloo, Waterloo Ontario, Canada)

Summary In contrast to the presence of N-bonded thiocyanate groups in *trans*-Pd(NCS)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> the phosphite compound *trans*-Pd(SCN)<sub>2</sub>[P(OPh)<sub>3</sub>]<sub>2</sub> contains S-bonded thiocyanates as shown by X-ray crystallographic structure determination: antisymbiosis in the phosphine complexes appears primarily to result from steric inhibition of S-bonding rather than electronic effects.

ONE of the classical and widely quoted<sup>1</sup> examples of antisymbiosis is the presence of M-NCS bonding in trans-Pd- $(NCS)_2(PR_3)_2$  and  $cis-Pt(NCS)_2(PR_3)_2$  (R = Et, Ph). This inversion of the preference of a soft ion for S over N donors has most frequently been rationalised in terms of  $\pi$ -bonding,<sup>2</sup> although alternative explanations have been proposed.<sup>1a,1d,2b,3,4</sup> In contrast to electronic arguments there is evidence<sup>5</sup> of a major role for steric effects in dictating M-NCS or M-SCN bonding in phosphine complexes. The key position of the compounds  $M(NCS)_2(PR_3)_2$  in coordination chemistry justified a study of analogous P(OR)<sub>3</sub> derivatives since phopshites have different trans-influences than phosphines,<sup>6</sup> smaller steric angles,<sup>7</sup> and, when  $\pi$ -bonding is important, are better  $\pi$ -acceptors. Thus the interplay of steric and electronic factors modifying symbiosis in CNScomplexes could be investigated.

The compound trans-Pd(SCN)<sub>2</sub>[P(OR)<sub>3</sub>]<sub>2</sub> (I) prepared from the chloride<sup>8</sup> by metathesis has a solid state i.r. spectrum [v(C =N) 2117 s, sp cm<sup>-1</sup> (s = strong, sp = sharp)] characteristic of S- bonded thiocyanate. The complex did not isomerise on heating to 95° for 4 h nor on recrystallisation from CH<sub>2</sub>Cl<sub>2</sub>-EtOH. Crystals (from MeCN) are monoclinic, a = 9.922(4), b = 10.096(8), c = 19.334(14) Å,  $\beta = 108.46(5)^{\circ}$ ; space group  $P2_1/c, Z = 4, D_m = 1.54 \text{ g}$ cm<sup>-3</sup>,  $D_c = 1.524 \text{ g cm}^{-3}$ . The structure was solved by the heavy-atom method using 3089 observed diffractometer data ( $2\theta \leq 60^{\circ}$ ) measured on a G.E. XRD6 diffractometer with Mo- $K_{\alpha}$  radiation and refined to the present R value of 0.063. The palladium atom is co-ordinated in squareplanar fashion to the phosphorus atoms of two P(OPh)<sub>3</sub> molecules and the sulphur atoms of two thiocyanate groups (Figure). The shortening of the Pd-P bonds  $[2\cdot312(1) \text{ Å}]$  in (I) compared to trans-Pd(SCN)<sub>2</sub>(Ph<sub>2</sub>PC =  $(\operatorname{Bu}^{t})_{2}$  [2.326(3) Å] consistent with either the increased  $\pi$ acceptor ability of the phosphite relative to the phosphine,



FIGURE. Molecular structure of  $trans-Pd(SCN)_2[P(OPh)_3]_2$  showing some pertinent bond lengths and angles.

reduced steric demand by the smaller phosphite, or a lower trans influence for the phosphite, is accompanied by a significant lengthening of the Pd-S bonds [2.352(2) Å in (I) vs.2.336(3) Å in trans-Pd(SCN)<sub>2</sub>(Ph<sub>2</sub>PC  $\equiv$  CBu<sup>t</sup>)<sub>2</sub>] perhaps indicating a mechanism for retaining the same electron density at the metal atom or the same non-bonded repulsions in the co-ordination sphere. The contrast in solid-state structures of trans-Pd(NCS)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> and trans-Pd(SCN)<sub>2</sub>[P-(OPh)<sub>3</sub>]<sub>2</sub> is notable. Solution i.r. spectra of trans-Pd(NCS)<sub>2</sub>-(PPh<sub>3</sub>)<sub>2</sub> in benzene, CHCl<sub>3</sub>, and CH<sub>2</sub>Cl<sub>2</sub> showed little if any evidence for S-bonded thiocyanate while for (I) S-bonded species were major components in all solutions. The tendency to increased S-bonding evident for phosphite complexes in the solid state was confirmed by the characterisation of the mixed species Pd(SCN)(NCS)[P(OMe)]2  $[v(C \equiv N) 2125 \text{ s, sp; } 2088 \text{ s, br cm}^{-1}], cis-Pt(SCN)(NCS) [P(OPh)_3]_2$  [v(C =N) 2132 s, sp; 2088 s, br cm<sup>-1</sup>] and cis  $Pt(SCN)(NCS)[P(OMe)_3]_2[\nu(C \equiv N) 2132 \text{ s, sp; } 2097 \text{ s, br}$  $cm^{-1}$  having both N- and S-bonded groups. Although we were able to isolate cis-Pd(NCS)<sub>2</sub>[P(OMe)<sub>3</sub>]<sub>2</sub> [ $\nu$ (C  $\equiv$ N) 2082 s, br; 2103 s, br cm<sup>-1</sup>] and  $Pt(NCS)_2[P(OPh)_3]_2$ 

 $[\nu(C \equiv N) 2099 \text{ s, br cm}^{-1}]$  from one solvent system (DMF-Et<sub>2</sub>O),<sup>9</sup><sup>†</sup> solution spectra in other solvents gave no evidence for complete isomerisation of Pd(SCN), [P(OPh)], Pd- $(SCN)(NCS)[P(OMe)_3]_2$ , or  $Pt(NCS)(SCN)[P(OR)_3]_2$  (R = Me, Ph) to N-bonded species.

The presence of M-SCN bonds in the phosphite complexes is incompatible with the  $\pi$ -bonding hypothesis. The results also appear at variance with recent data for Au<sup>I</sup> complexes.<sup>10</sup><sup>†</sup> The greater tendency to S-bonding in the

 $P(OR)_3$  complexes of  $Pd^{II}$  may be due to a reduced steric inhibition to sulphur co-ordination on replacing a phosphine by a smaller phosphite. Conversely the presence of M-NCS bonds in  $M(NCS)_2(PR_3)_2$  (R = Et, Ph) may be steric rather than electronic in origin.

We thank the N.R.C. for financial support.

(Received, 5th April 1974; Com. 412.)

† Single crystals of these complexes contain DMF of crystallisation. It is uncertain to what extent this influences the solid state structures.

<sup>+</sup> For Au<sup>I</sup>, a higher ratio of N- to S-bonded CNS<sup>-</sup> was found for P(OPh)<sub>3</sub> than PPh<sub>3</sub>, despite the fact that phosphites P(OR)<sub>3</sub> have a lower trans-influence than the corresponding phosphines PR<sub>3</sub>.

<sup>1</sup> See for example J. E. Huheey, 'Inorganic Chemistry, Principles of Structure and Reactivity,' Harper and Row, New York, 1972, p. 408; S. Ahrland, Structure and Bonding, 1966, 1, 207; F. Basolo and R. G. Pearson, 'Mechanisms of Inorganic Reactions,' 2nd edn., Wiley, New York, 1967, p. 296; J. L. Burmeister, Coordination Chem. Rev., 1966, 1, 205.
<sup>2</sup> A. Turco and C. Pecile, Nature, 1961, 191, 66; J. L. Burmeister and F. Basolo, Inorg. Chem., 1964, 3, 1587.
<sup>3</sup> A. H. Norbury, J. Chem. Soc. (A), 1971, 1089.
<sup>4</sup> B. G. Pearson, Improve Chem. 1973, 12, 712.

<sup>4</sup> R. G. Pearson, *Inorg. Chem.*, 1973, 12, 712.
<sup>5</sup> See for example, (a) G. Beran, H. A. Patel, P. C. Chieh, and A. J. Carty, *J.C.S. Dalton*, 1973, 488; (b) G. J. Palenik, W. L. Steffen, M. Mathew, M. Li, and D. W. Meek, Inorg. Nuclear Chem. Letters, 1974, 10, 125.

<sup>6</sup> F. H. Allen, A. Pidcock, and C. R. Waterhouse, J. Chem. Soc. (A), 1970, 2087.

<sup>7</sup> C. A. Tolman, J. Amer. Chem. Soc., 1970, 92, 2956.
<sup>8</sup> N. Ahmad, G. W. Ainscough, T. A. Jones, and S. D. Robinson, J.C.S. Dalton, 1973, 1148.
<sup>9</sup> Compare with J. L. Burmeister and H. J. Gysling, Inorg. Chim. Acta., 1967, 1, 100.

<sup>10</sup> J. L. Burmeister and J. B. Melpolder, J.C.S. Chem. Comm., 1973, 613.