
Reinvestigation of the Mechanism of Bromination of Uracil and its N-Methyl Derivatives

By Sujit Banerjee and Oswald S. Tee*

(Department of Chemistry, Sir George Williams University, Montreal H3G 1M8, Quebec, Canada)

Summary Uracils bearing substituents at N_1 react rapidly with bromine in aqueous acidic solutions to give "HOBr" addition products, which undergo slow acid-catalysed dehydration to 5-bromo-uracils (4). Uracils bearing only hydrogen at N^1 react rapidly with bromine to give sequentially (4) and then the 5,5-dibromo-derivatives (6). This rapid reaction is suppressed, however, in strong acid, where N^1 of the intermediate (7) may be protonated. Mechanisms to accommodate these observations are suggested, including one involving a transient N-bromo species (2; $R^1 = Br$).

THE tendency of uracils (1) to undergo addition reactions may have important biological consequences.¹ Well documented is the photochemically induced addition of water to uracil to give (8; X = OH),² and the thermal addition of NaHSO₃ to give (8; $X = SO_3Na$).³ Moreover, the bromination of uracil is believed to involve addition processes. Wang⁴ suggested that attack by bromine upon uracils is rapid and leads to the adducts (3) which subsequently undergo elimination to the 5-bromo-uracils (4). These in turn react further with bromine to give isolable adducts (6). Other workers,⁵ however, found that spectrophotometric and potentiometric titration of 1,3-dimethyl-

Scheme

uracil (1; $R^1 = R^2 = Me$) and of uridine (1; $R^1 = ribosyl$, $R^2 = H$) with bromine in a buffer of pH = 4.76 implicate a rapid 1:1 reaction, whereas uracil (1; $R^1 = R^2 = H$) reacts rapidly with 2 mol. equiv. of bromine to give the 5,5dibromo-derivative (6; $R^1 = R^2 = H$). We report here our preliminary findings on the bromination of uracils, and suggest a reason for the two types of behaviour first evident in the work of Moore and Anderson.⁵

accompanied by shifts to longer wavelengths as well as by a decrease in absorbance, suggesting the rapid formation of 5-bromo-3-methyluracil (4; $R^1 = H$, $R^2 = Me$), and the simultaneous bromination of 3-methyluracil and 5-bromo-3-methyluracil. In the stronger acid, however, both uracil and 3-methyluracil react only with 1 mol. equiv. of bromine, and no shift in wavelength is apparent, *i.e.* we are again observing simply $(1) \rightarrow (3)$. It seems, therefore, that

TABLE 1

Rate of appearance of the 5-bromo-uracils (4) from the adducts (3). $k_{\rm obs} \times 10^4 {\rm min^{-1}}$

	<u>_</u>					
$[H_2SO_4]/N$	$\overline{R^1=R_2=H}$	$R^1 = H$, $R^2 = Me$	$R^1 = Me, R^2 = H$	$R^1 = R^2 = Me$		
0.5	8.61	16.8	4.98	9.07		
1.0	11.5	26.4	11.1	$21 \cdot 8$		
2.0	21.1	$56 \cdot 1$	32.9	71.6		
4.0	58.8	177	154	371		
4 ·0	13·6ª			105ª		

^a Refer to the 5-deuterio-substrates.

The adducts (3) are readily characterised by ¹H n.m.r. spectroscopy, and show two well resolved doublets in the region δ 4.30–5.40 for 5- and 6-H. These absorptions slowly disappear, and are replaced by peaks appropriate to (4). In other experiments we have measured spectrophotometrically the rate of appearance of the 5-bromouracils (4) in aqueous sulphuric acid solutions. The pseudofirst-order rate constants observed (Table 1) are independent of initial bromine concentration, but are markedly dependent upon the acidity. The similarity of the rate data for the four substrates (1; $R^1 = H$ or Me, $R^2 = H$ or Me), and the observation of sizable isotope effects $(k_{\rm H}/k_{\rm D} = 4.3, 3.5)$ for the 5-deuterio-derivatives of (1; $R^1 = R^2 = H$, or $R^1 =$ $R^2 = Me$) suggests that all four 5-bromo-uracils (4; $R^1 =$ H,Me; $R^2 = H$,Me) are formed by a rate-determining dehydration $(3) \rightleftharpoons (2) \rightarrow (4)$. A similar mechanism is operative in the bromination of pyrimidin-2(1H)-one and its derivatives.6

It appears therefore that, in the absence of excess of bromine, the uracils (1) undergo monobromination via the addition-elimination sequence $(1) \rightarrow (3) \rightarrow (4)$, as Wang suggested.⁴ However, since the conversion $(3) \rightarrow (4)$ is slow, this scheme does not account for the rapid formation of the dibromo-derivative (6; $R^1 = R^2 = H$) during the titration of uracil with bromine.⁵ We have now studied the spectrophotometric titration of uracils with bromine in both strongly and weakly acidic media (see Table 2). For the N¹-substituted uracils the long wavelength absorptions smoothly collapse upon addition of bromine. On the other hand, 3-methyluracil (1; $R^1 = H$, $R^2 = Me$) behaves like uracil⁵ in that stepwise addition of bromine in weak acid is

where N¹ of the uracil ring is substituted, or in strong acids where N^1 in some intermediate may be protonated, rapid formation of 5-bromo-uracils is suppressed.

TABLE 2

Spectrophotometric titrations of uracils with bromine.

Uracil (1)			Uracil : bromine	
			0.1N-H ₂ SO ₄	$4 \cdot 0$ N-H ₂ SO ₄
$R^1 = R^2 = H$	••		1:2	1:1
$R^1 = H, R^2 = Me$	••	••	1:2	1:1
$R^1 = Me, R^2 = H$		• •	1:1	
$R^1 = R^2 = Me$	••	••	1:1	
$R^1 = ribosyl, R^2 =$	н	••	1:1ª	

^a From ref. 5, in buffer of pH 4.76.

In explanation we suggest that in solutions of low acidity the intermediate ion (2; $R^1 = H$, $R^2 = H$ or Me) is in equilibrium with its conjugate base (7; $R^2 = H$ or Me) which may be rapidly converted into (4; $R^1 = H$, $R^2 = H$ or Me) by interaction with bromine. This may occur via the formation of an N-bromo-derivative $(2; R^1 = Br)$ which undergoes rapid deprotonation at C-5 to give (4; $R^1 = Br$) and then (4; $R^1 = H$) which then reacts rapidly with bromine to give (6; $R^1 = H$). Such a mechanism would be suppressed in strong acid if the equilibrium between (2; $R^1 = H$) and (7) greatly favours (2). Moreover this mechanism is impossible if in (2), $R^1 = Me$ or ribosvl.

We thank the National Research Council of Canada for financial support.

(Received, 3rd April 1974; Com. 379.)

¹ J. G. Burr, Adv. Photochem., 1968, 6, 193.

1971, 93, 2301.

⁶ O. S. Tee and S. Banerjee, Chem. Comm., 1972, 1032; Canad. J. Chem., 1974, 52, 451.

 ² J. G. Burr, *Iac. I morotherm. 1960.*, 9, 1967.
² J. G. Burr, E. H. Park, and A. Chan, *J. Amer. Chem. Soc.*, 1972, 94, 5866; W. A. Summers, C. Enwall, J. G. Burr, and R. L. Letsinger, *Photochem. Photobiol.*, 1973, 17, 295.
⁸ R. Shapiro, R. E. Servis, and M. Welcher, *J. Amer. Chem. Soc.*, 1970, 92, 422; H. Hayatsu and M. Inoue, *J. Amer. Chem. Soc.*,

⁴S. Y. Wang, J. Org. Chem., 1959, 24, 11. ⁵A. M. Moore and S. M. Anderson, Canad. J. Chem., 1959, 37, 590.