A New Synthesis of Purines

By FUMIO YONEDA,* SHIGURU MATSUMOTO, and MASATSUGU HIGUCHI (Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto 862, Japan)

Summary Treatment of 6-aminopyrimidines with 4phenyl-1,2,4-triazoline-3,5-dione gave the Michael-type adducts, 6-amino-5-(4-phenylurazol-1-yl)pyrimidines; fusion of these adducts with several aryl aldehydes gave the corresponding 8-arylpurines.

We report a new synthetic route to purine derivatives, in which 4-phenyl-1,2,4-triazoline-3,5-dione $(PTAD)^1$ is effective as a nitrogen source for N-7 of the purine ring system.

PTAD has been found to react readily with 6-aminopyrimidines unsubstituted in position 5, in dioxan at room temperature, to give excellent yields of the Michael-type adducts, 6-amino-5-(4-phenylurazol-1-yl)pyrimidines. 6-Amino-1,3-dimethyl-5-(4-phenylurazol-1-yl)uracil (I), m.p. 241°, 6-amino-1-methyl-5-(4-phenylurazol-1-yl)uracil (II), m.p. 244°, and 6-amino-4-hydroxy-2-phenyl-5-(4-phenylurazol-1-yl)pyrimidine (III), m.p. > 330°, were prepared.

Fusion of (I) with an excess of benzaldehyde (ca. 2 equiv.) at 180° for 1 h, followed by dilution with ethanol, gave 8-phenyltheophylline (IV) in good yield. Similarly heating (I) with several aryl aldehydes gave the respective 8-aryl-theophyllines. This reaction is also applicable to other adducts to give the corresponding 8-arylpurine derivatives (Table).[†]

(Received, 26th April 1974; Com. 464.)

TABLE

 $(XIV) R^4 = 3.4 - C_b C_6 H_3$

Purine formation by reaction of 6-amino-5-(4-phenylurazol-1-yl)pyrimidines (Michael-type adducts) and aryl aldehydes

michael-type		Reaction			
adduct	Aldehyde	temp/°C	Time/h	Product	Yielda/%
(\mathbf{I})	Benzaldehyde	180	I	(IV)	70
ÌÌ	p-Chlorobenzaldehyde	180	1.5	(V)	76
ίI)	3,4-Dichlorobenzaldehyde	180	0.2	(VI)	82
(I)	p-Anisaldehyde	180	1	(VII)	72
(I)	<i>p</i> -Dimethylaminobenzaldehyde	140	3	(VIII)	35
(II)	Benzaldehyde	230	3	(IX)	68
(II)	p-Chlorobenzaldehyde	230	1	(\mathbf{X})	75
(II)	3,4-Dichlorobenzaldehyde	230	1	(\mathbf{XI})	78
(III)	Benzaldehyde	250	1.5	(XII)	69
(III)	p-Chlorobenzaldehyde	250	1	(XIII)	70
(III)	3,4-Dichlorobenzaldehyde	250	1	(XIV)	75

^a None of these compounds melted below 330°. All compounds were recrystallized from dimethylformamide or ethanol.

† Satisfactory analytical and spectral date were obtained for all products.

¹ R. Stolle, Ber., 1912, 45, 273.