Synthesis and X-Ray Structure of Tri- μ-carbonyl-bis-(1,2-diphenyl-3,4-di-t-butylcyclobutadiene)di-iron

By Shun-Ichi Murahashi,* Takahisa Mizoguchi, Takahiro Hosokawa, and Ichiro Moritani
(Department of Chemistry, Faculty of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka, Japan 560)
and Yasushi Kai, Masashi Kohara, Noritake Yasuoka, and Nobutami Kasai
(Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadakami, Suita, Osaka, Japan 565)

Summary Irradiation of 1,2-diphenyl-3,4-di-t-butylcyclobutadienetricarbonyliron (1) gives the new complex, $\left(\mathrm{C}_{24} \mathrm{H}_{28}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}$ which, from X-ray data, appears to contain an iron-iron triple bond $[\mathrm{Fe}-\mathrm{Fe}=2 \cdot 177(3) \AA$].

Only few examples are currently available of the photoreactions of iron complexes of cyclobutadiene. ${ }^{1}$ We now describe a new photo-dimeric cyclobutadiene iron complex which appears to contain an iron-iron triple bond.

(1) $\mathrm{R}=\mathrm{Bu}^{\mathrm{t}}$
(2) $\mathrm{R}=\mathrm{Ph}$

(3) $R=B u^{t}$
(4) $R=P h$

Irradiation of a solution of complex (1) ${ }^{2}$ in hexane followed by quick preparative t.l.c. (silica gel) under argon afforded violet crystals of $\left(\mathrm{C}_{24} \mathrm{H}_{28}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(\mathbf{3}), \dagger$ m.p. 204-205 (decomp.), moderately air stable in the solid state, but unstable in solution. The i.r. spectrum shows bridging CO stretching bands at 1837 and $1830 \mathrm{~cm}^{-1}$. The n.m.r. spectrum showed a similar absorption pattern to that of (1), but to slightly lower field [$\delta 1.35(\mathrm{t}, 18 \mathrm{H}$,
Bu^{t}) and $\mathbf{7 . 1 3}(\mathrm{m}, 10 \mathrm{H}, \mathrm{Ph})$. Treatment of complex (3) with CO (140 atm) at 80° led to complex (1) quantitatively.

Figure. Molecular structure of tri- μ-carbonyl-bis-(1,2-diphenyl-3,4-di-t-butylcyclobutadiene)di-iron with thermal ellipsoids at 50% probability level.

The analogous photoreaction of complex (2) gave dark violet crystals of (4), $\left(\mathrm{C}_{28} \mathrm{H}_{20}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(4), \dagger$ m.p. $132-134^{\circ}$ (decomp.), i.r. 1858 and $1849 \mathrm{~cm}^{-1}$, which could be similarly converted into (2) on treatment with CO.

The crystal structure of (3) was determined by X-ray diffraction. Crystal data: $\mathrm{C}_{51} \mathrm{H}_{56} \mathrm{Fe}_{2} \mathrm{O}_{3}, M=828.7$, tetragonal, $a=b=15 \cdot 093(5), c=18 \cdot 641(4) \AA, U=4246 \cdot 5(3 \cdot 1)$ $\AA_{,^{3}} D_{\mathrm{m}}=1.305 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation), $Z=4, D_{\mathrm{c}}=1.296 \mathrm{~g}$ cm^{-3}, space group $\overrightarrow{I 4} ; \mathrm{Cu}-K_{\alpha}$ radiation. 1514 intensity data were collected on a Rigaku automated four-circle

[^0]diffractometer $[(\sin \theta) / \lambda \leqslant 0.532]$. The structure was determined by the heavy atom method and refined by block-diagonal least-squares assuming anisotropic temperature factors for non-hydrogen atoms. Anomalous dispersion of the iron atom was taken into account (for $\mathrm{Cu}-K_{\alpha}$; $\Delta f^{\prime}=-1 \cdot 1, \Delta f^{\prime \prime}=3 \cdot 4$). The final R value is 0.061 for 1484 non-zero reflections.

The dimeric molecule is located on the crystallographic two-fold axis passing through the centre of the $\mathrm{Fe}-\mathrm{Fe}$ bond and a carbonyl group $[\mathrm{C}(\mathbf{1})=\mathrm{O}(1)]$. The two iron atoms are bridged by three carbonyl groups [average $\mathrm{Fe}-\mathrm{C}(\mathrm{CO})=$ $1.974 \AA]$. The cyclobutadiene ring is essentially squareplanar; the $\mathrm{C}-\mathrm{C}$ (av. $1 \cdot 468 \AA$) and $\mathrm{Fe}-\mathrm{C}$ (ring) (av. $2 \cdot 062 \AA$) distances agree well with those of $\mathrm{Ph}_{4} \mathrm{C}_{4} \mathrm{Fe}(\mathrm{CO})_{3}{ }^{4}(\mathrm{C}-\mathrm{C}$ av. $1-459 \AA$; Fe-C av. $2 \cdot 067 \AA$).

The most remarkable feature is the extremely short $\mathrm{Fe}-\mathrm{Fe}$ bond, $2 \cdot 177(3) \AA$. This distance is much shorter than that in $\mathrm{Fe}_{2} \mathrm{CO}_{9}\left(2 \cdot 523 \AA^{5}\right)$ and even shorter than that in $\left(\mathrm{But}^{\mathrm{t}} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{4}(2 \cdot 215 \AA)$, which is the only known example of an $\mathrm{Fe}-\mathrm{Fe}$ double bond. ${ }^{6}$ The effective atomic number rule at its simplest level would suggest that $\left(\mathrm{C}_{24}{ }^{-}\right.$ $\left.\mathrm{H}_{28}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}$ should be formulated as in (3) in which each iron atom accepts four electrons from a cyclobutadiene group, one electron from each of three carbonyls, and shares three electron pairs with the other iron. This is consistent with the diamagnetic behaviour and the extremely short $\mathrm{Fe}-\mathrm{Fe}$ distance of the complex.

We thank Professor R. Pettit for helpful discussions.
(Received, 16th May 1974; Com. 552.)
${ }^{1}$ A. Bond and M. Green, Chem. Comm., 1971, 12; J. S. Ward and R. Pettit, J. Amer. Chem. Soc., 1971, 93, 262.
${ }^{2}$ M. Avram, I. G. Dinulescu, G. D. Mateesu, E. Avram, and C. D. Nenitzescu, Rev. Roumaine Chem., 1969, 14, 1181.
${ }^{3}$ P. M. Maitlis and M. L. Games, J. Amer. Chem. Soc., 1963, 85, 1887.
${ }^{4}$ R. P. Dodge and V. Schomaker, Acta Cryst., 1965, 18, 614.
${ }^{5}$ F. A. Cotton and J. M. Troup, J.C.S. Dalton, 1974, 800 ; H. M. Powell and R. V. G. Ewens, J. Chem. Soc., 1939, 286, give $2 \cdot 46$ A. For $\mathrm{Fe}-\mathrm{Fe}$ bonds in other complexes, M. I. Bruce, Organometallic Chem. Rev., B, 1969, 5, 351.
${ }^{6}$ K. Nicholas, L. S. Bray, R. E. Davis, and R. Pettit, Chem. Comm., 1971, 608.

[^0]: \dagger Satisfactory elemental analyses were obtained.

