Formation of closo- and nido-Metallocarboranes from closo- $\mathrm{C}_{2} \mathrm{~B}_{9}$ and $-\mathrm{C}_{2} \mathrm{~B}_{7}$ Carboranes; Molecular Structures of closo-1,1-($\left.\mathbf{M e}_{2} \mathbf{P h P}\right)_{\mathbf{2}} \mathbf{- 2 , 4 -} \mathbf{M e}_{\mathbf{2}} \mathbf{- 1 , 2 , 4} \mathbf{- P t C}_{\mathbf{2}} \mathrm{B}_{\mathbf{9}} \mathrm{H}_{\mathbf{9}}$ and nido-10,10-($\left.\mathrm{Et}_{3} \mathrm{P}\right)_{\mathbf{2}} \mathbf{- 2 , 8}-\mathrm{Me}_{\mathbf{2}} \mathbf{- 1 0 , 2 , 8}-\mathrm{PtC}_{2} \mathrm{~B}_{7} \mathrm{H}_{7}$

By Michael Green, John L. Spencer, F. Gordon A. Stone,* and Alan J. Welch (Department of Inorganic Chemistry, University of Bristol, Bristol BS8 ITS)

Summary Reaction of closo-1,6-Me $-1,6-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{7}$ with [Pt$\left.\left(\mathrm{Et}_{3} \mathrm{P}\right)_{3}\right]$ affords nido-10,10-($\left.\mathrm{Et}_{3} \mathrm{P}\right)_{2}-2,8-\mathrm{Me}_{2}-10,2,8-\mathrm{PtC}_{2}-$ $\mathrm{B}_{7} \mathrm{H}_{7}$, a stereochemically non-rigid molecule; the structural identity of closo-1,1-($\left.\mathrm{Me}_{2} \mathrm{PhP}\right)_{2}-2,4-\mathrm{Me}_{2}-1,2,4-\mathrm{PtC}_{2}-$ $\mathrm{B}_{9} \mathrm{H}_{9}$ and the nido-metallocarborane are established by X-ray crystallography.

We have reported ${ }^{1}$ a new synthesis of metallocarboranes involving direct insertion of d^{10} transition metals into the l1-atom closo-carborane $\mathrm{C}_{2} \mathrm{~B}_{8} \mathrm{H}_{8} \mathrm{Me}_{2}$. However, the structure of the insertion products was based on spectroscopy, and on an alternative synthesis. An unambiguous structural characterisation was therefore necessary.

Figure 1. Structure of $\left[\mathrm{Me}_{2} \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right] \operatorname{Pt}[\mathrm{PPhMe}]_{2}$.
A single crystal X-ray diffraction study of $1,1-\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{2}$ -$2,4-\mathrm{Me}_{2}-1,2,4-\mathrm{PtC}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}$, the product of the reaction of $\left[\mathrm{Pt}\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{4}\right]$ with $2,3-\mathrm{Me}_{2}-2,3-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}$, established the molecular structure shown (Figure 1). Crystal data: centrosymmetric triclinic with $a=9.324(3), b=10.285(4)$, $c=14 \cdot 208(8) \AA, \alpha=100 \cdot 40(4), \beta=94 \cdot 32(4), \gamma=98 \cdot 95(3)^{\circ}$; $R=0.042$ for 4330 reflections (Syntex $P 2_{1}$ four-circle diffractometer). This result confirms that the metal
co-ordinates three boron and two carbon atoms to complete a closo-2,4-dicarbaicosahedron. The platinum atom is situated ca. $1 \cdot 75 \AA$ above the $\mathrm{C}_{2} \mathrm{~B}_{3}$ face which exhibits distortions from an ideal geometry similar to those already recorded ${ }^{2}$ for other 1-metallo-2,4-dicarbaboranes. Although the PtP_{2} unit subtends an almost perpendicular dihedral angle ($89 \cdot 6^{\circ}$) with the $\mathrm{B}(3) \mathrm{B}(5) \mathrm{B}(6)$ plane, the former is twisted towards $\mathrm{B}(6)$ and $\mathrm{C}(4) c a \cdot 10 \cdot 2^{\circ}$ with respect to the $\mathrm{PtB}(3) \mathrm{B}(12) \mathrm{B}(10)$ plane.

Figure 2. Structure of $\left[\mathrm{Me}_{2} \mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{7}\right] \mathrm{Pt}\left[\mathrm{PEt}_{3}\right]_{2}$. Phosphino ethyl groups are omitted for clarity.

With structural confirmation of the nature of this polyhedral expansion reaction it was clearly important to examine the reaction of a Pt^{0} species with a 9 -atom carborane. Treatment (room temperature) of $\left[\mathrm{Pt}\left(\mathrm{Et}_{3} \mathrm{P}\right)_{3}\right]$ with $1,6-\mathrm{Me}_{2}-1,6-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{7}{ }^{3}$ in light petroleum affords (I) as the only isolable product ($>90 \%$) [m.p. 135°; ${ }^{1} \mathrm{H}$ n.m.r. resonances $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at $\tau 8.02\left(\mathrm{~m}, \mathrm{PCH}_{2} \mathrm{Me}\right), 8.03$ (s, cage Me), and $\left.8.98\left(\mathrm{~m}, \mathrm{PCH}_{2} \mathrm{Me}\right)\right]$. The corresponding reaction with $1,6-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{9}{ }^{3}$ gave pale yellow needles of (II) [m.p. $153^{\circ} ;{ }^{1} \mathrm{H}$ n.m.r. resonances $\left(\mathrm{CDCl}_{3}\right)$ at $\tau 6.46(\mathrm{~m}, 2 \mathrm{H}$, cage CH$), 8.04$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{Me}\right)$, and $9.00\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{Me}\right) ;{ }^{195} \mathrm{Pt}$ resonance (INDOR) +747 p.p.m. (w.r.t. $21 \cdot 4 \mathrm{MHz}$), ${ }^{31} \mathrm{P}$ resonance (INDOR) $\mathbf{- 1 4 . 0 3}$ p.p.m. (w.r.t. external $\mathrm{H}_{3} \mathrm{PO}_{4}$), $|J(\mathrm{PPt})| 2957 \mathrm{~Hz}$; ${ }^{11} \mathrm{~B}$ resonances $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 80.5 \mathrm{MHz}\right.$ w.r.t. $\left.\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}\right)$ at $\delta-1.6(\mathrm{~m}, 3 \mathrm{~B}),+10.5(\mathrm{~m}, 2 \mathrm{~B})$, and $+28.4[\mathrm{~d}$, $2 \mathrm{~B}, J(\mathrm{BH}) 140 \mathrm{~Hz})]$. The n.m.r. data imply a molecular plane of symmetry for (I) and (II) in solution, and do not define a unique structure.
A single crystal X-ray diffraction study of (I) revealed the molecular structure shown (Figure 2). Crystal data: monoclinic, space group $P 2_{1} / a, a=16.955(10), b=18.879-$ (18), $c=10 \cdot 066(16) \AA, \beta=125 \cdot 66(8)^{\circ}, R=0 \cdot 107$ for 2810 significant reflections.

The platinum co-ordinates boron atoms 5, 6, 7, and 9 to produce a nido-10-atom polyhedron whose geometry best approximates to a bicapped $[\mathrm{B}(9)$ and $\mathrm{C}(2)]$ square antiprism. The length of the diagonals of the open face [defined by atoms $\mathrm{Pt}, \mathrm{B}(7), \mathrm{C}(8)$ and $\mathrm{B}(9)$] do not constitute bonding interactions $[\mathrm{Pt} \ldots \mathrm{C}(2), 2 \cdot 83(4) \AA ; \mathrm{B}(7) \ldots$ $B(9), 2 \cdot 52(7) \AA]$. It is interesting to note that in the geometry adopted both cage carbon atoms occupy relatively low co-ordination positions. Other important molecular parameters are: bond lengths to platinum; $\mathrm{P}(1), 2 \cdot 29(1)$;
long $\mathrm{Pt}-\mathrm{B}$ bonds, the $\mathrm{B}(6)-\mathrm{Pt}-\mathrm{B}(7)$ bond angle being the largest of the narrow $\mathrm{B}-\mathrm{Pt}-\mathrm{B}$ angles, and that $\mathrm{B}(6)-\mathrm{B}(7)$ is the longest bond between the metallo-co-ordinated boron atoms.
It would be expected ${ }^{4}$ that both the $1,2,4-\mathrm{PtC}_{2} \mathrm{~B}_{9}$ and $10,2,8-\mathrm{PtC}_{2} \mathrm{~B}_{7}$ complexes should have a closo-structure. In the case of the 10 -atom $\mathrm{PtC}_{2} \mathrm{~B}_{7}$ species (22 electron) a bicapped square antiprismatic structure would be predicted, contrary to the structural result. Moreover, (I) and (II) show no evidence of thermal rearrangement up to 300°

Scheme
$\mathrm{P}(2), 2 \cdot 34(1) ; \mathrm{B}(5), 2 \cdot 36(3) ; \mathrm{B}(6), 2 \cdot 29(5) ; \mathrm{B}(7), 2 \cdot 43(6)$; $\mathrm{B}(9), 2.07(4) \AA$; other bonds; $\mathrm{B}(9)-\mathrm{B}(5), 1 \cdot 74(8)$; $\mathrm{B}(5)-$ $\mathrm{B}(6), 1.98(6) ; \mathrm{B}(6)-\mathrm{B}(7), 2.09(9) \AA$; angles at platinum: $\mathrm{P}(1) \mathrm{P}(2), \quad 102.7(4) ; \quad \mathrm{B}(9) \mathrm{B}(5), \quad 41(2) ; \quad \mathrm{B}(5) \mathrm{B}(6), \quad 50(2)$; $\mathrm{B}(6) \mathrm{B}(7), 52(2)$; and $\mathrm{B}(7) \mathrm{B}(9), 67(2)^{\circ}$.

Such molecular asymmetry can only be correlated with the n.m.r. data in terms of a rapid interchange in solution at normal temperatures between the structure determined, and its mirror image (Scheme). This interpretation is consistent with the $\mathrm{Pt}-\mathrm{B}(6)$ bond being the shortest of the
thus excluding the possibility that these are kinetically controlled products. It is interesting that the related $\pi-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CoC}_{2} \mathrm{~B}_{7} \mathrm{H}_{9}$ and $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{9}\right)_{2}\right]$ - species do in fact have the expected closo-structures. ${ }^{5}$

We thank Professors F. A. L. Anet and M. F. Hawthorne and Drs R. R. Rietz and C. J. Jones of U.C.L.A. for the ${ }^{11}$ B n.m.r. spectra, and the U.S.A.F. Office of Scientific Research for support.
(Received, 6th May 1974; Com. 521.)
${ }^{1}$ J. L. Spencer, M. Green, and F. G. A. Stone, J.C.S. Chem. Comm., 1972, 1178.
${ }_{2}$ R. M. Wing, J. Amer. Chem. Soc., 1970, 92, 1187.
${ }^{3}$ P. M. Garrett, J. C. Smart, G. S. Ditta, and M. F. Hawthorne, Inorg. Chem., 1969, 8, 1907.
${ }^{4}$ R. E. Williams, Inorg. Chem., 1971, 10, 210 ; K. Wade, Chem. Comm., 1971, 792; R. W. Rudolph, Inorg. Chem., $1972,11,1974$.
${ }^{5}$ D. St. Clair, A. Zalkin, and D. H. Templeton, Inorg. Chem., 972, 11, 377; W. J. Evans, G. B. Dunks, and M. F. Hawthorne, J. Amer. Chem. Soc., 1973, 95, 4565.

