Platinum Dithiocarbonimidato Complexes *via* Abstraction of Sulphur from **Organic Isothiocyanates**

By FRANK L. BOWDEN, ROBERT GILES, and ROBERT N. HASZELDINE* (Chemistry Department, University of Manchester Institute of Science and Technology, Manchester M60 1QD)

Summary Dithiocarbonimidatoplatinum(II) complexes, $Pt(S_2C:NR)L_2$, are obtained from $Pt(allene)L_2$, PtL_4 , or Pt(PhNCS)L₂ by a reaction with organic isothiocyanates that involves a novel sulphur abstraction.

ONLY three neutral transition metal complexes of the dithiocarbonimidate ligand, S₂C=NR²⁻ are known; these are $M(S_2C=NR)L_2$, (M=Ni,Pd,Pt; R = CN, L = Ph_3P) prepared from (NH₄)₂(S₂C=NCN) and MCl₂L₂.¹ We now report that the platinum complexes Pt(allene)L₂ (Ia, allene = CH_2 ; C; CH_2 ; Ib, allene = CF_3 ·CH; C; CH_2), PtL_4 (II), or Pt(PhNCS)L₂ (III) ($L = Ph_3P$) react with an excess of a liquid organic isothiocyanate (e.g., PhNCS or MeNCS) at room temperature to give red solutions from which white crystals of the dithiocarbonimidato complexes Pt(S2C:NR)-L₂ (IVa, R=Ph; IVb, R=Me) are isolated (30-60%). The formation of phenyl isocyanide by sulphur abstraction from phenyl isothiocyanate is shown by the isolation of the complex Pt(S₂C: NPh)(PhNC)L (V) (4%); a red oil, possibly an oligomer of phenyl isocyanide, is also obtained.

Phenyl isothiocyanate undergoes sulphur abstraction reactions with Fe(CO)₅ and Mo(CO)₆ but the only characterised products from these reactions are Fe(CO)₄PhNC and Mo(CO)₃PhNC.²

Reaction of phenyl isothiocyanate with (Ia) in a 1:1 ratio at room temperature gives (III) as the main product.

The formulae proposed[†] for complexes (IV) and (V) are supported by i.r. [IVa, v(C=N) 1560, v(C-S) 930; IVb ν(C=N) 1585, ν(C-S) 903; V, ν(NC) 2180, ν(C=N) 1576, ν(C-

S) 918 cm⁻¹] and ¹H n.m.r. data [IVb, τ (CDCl₃) 6.89 (s, 3H, CH₃), 2.70 (complex, 30H, phenyl)], and by the results of protonation and deprotonation reactions. Protonation of (IVa) and (IVb) with trifluoroacetic acid in benzene affords white crystalline complexes† formulated as $[Pt(S_2C:NHR)L_2]^+[CF_3CO_2]^-$, (VIa, R = Ph; VIb, R = Me) [VIa, $\nu(NH^+)$ 2500 br, $\nu(CO_2^-)$ 1671, $\nu(C=N)$ 1558, $\nu(C-S)$ 970; VIb, v(NH⁺) 2600 br, v(CO₂⁻) 1686, v(C=N) 1574, v(C-S) 950 cm⁻¹] which are 1: 1 electrolytes in nitromethane. The ¹H n.m.r. spectrum of (VIa) shows a broad peak centred on τ (CDCl₃ solution) 0.81 (1 H, NH⁺) which vanishes on addition of D₂O to the solution. Treatment of (VIa) with base regenerates (IVa). The possibility that the 2180 cm⁻¹ band in the i.r. spectrum of (V) is due to a co-ordinated nitrile was excluded on the grounds that no replacement of the phosphine ligands in (IVa) could be achieved even with a large excess of benzonitrile under forcing conditions.

The formation of the sulphur-rich complexes (IVa, IVb) probably involves the formation of (III) from (Ia), (Ib), or (II) either via PtL_2 as an intermediate or by direct ligand displacement. Co-ordination of an additional molecule of RNCS to (III) could then give Pt(RNCS)₂L₂, which collapses to the dithiocarbonimidato complex via extrusion of RNC. A rhodium compound RhCl(PhNCS)₂L₂ has been reported as the major product of the reaction between $RhClL_3$ (L = Ph_3P) and $PhNCS.^3$

(Received, 9th May 1974; Com. 529.)

+ Complexes (IVa), (IVb), and (V) had correct molecular weights and, like complexes (VIa) and (VIb), gave satisfactory elemental analysis.

 ¹ F. A. Cotton and J. A. McCleverty, Inorg. Chem., 1967, 6, 229.
² T. A. Manuel, Inorg. Chem., 1964, 3, 1703.
³ M. C. Baird and G. Wilkinson, J. Chem. Soc. (A), 1967, 865.