Addition of Cycloheptatrienylidene to 2,3-Dicyanobicyclo [2,2,2] octatriene

By Katsuhiro Saito, Yoshiro Yamashita, and Toshio Mukai*
(Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan)

Summary Reaction of cycloheptatrienylidene (I) with 2,3-dicyanobicyclo[2,2,2]octatriene (II) afforded an unexpected product (III), presumably formed via a carbene addition mechanism.

SEVERAL recent reports have described the addition of cycloheptatrienylidene (I) to olefins having electron withdrawing groups. We report here that the carbene (I) reacts with 2,3-dicyanobarrelene (II) to give, unexpectedly, compound (III).

When tropone tosylhydrazone sodium salt was heated at 120 °C in diglyme in the presence of compound (II), nitrogen was evolved quantitatively, and a red oily product (III) † (8%) was obtained together with heptafulvalene (6%) and bitropyl (3%). Assignment of structure (III) was based on spectral and chemical evidence: λ_{max} (MeOH) 244 and 359 nm (log ϵ , 4·16 and 3·95); ν_{max} (neat), 2192 cm⁻¹; δ (100 MHz; CDCl₃)‡ 1·98 (H^a), 5·48 (H^b), and 6·4—6·8 (remaining 9H), J_{ab} 7, J_{ac} 5.5 Hz; m/e 244 (3%, M^+), 178 (30), 153 (12) and 128 [100, C₆H₄(CN)₂]. The spectral data suggest that the CN groups are conjugated with a double bond (i.r.), and a heptafulvene (u.v.)2 and a bicyclo-[2,2,1]hepta-2,5-diene fragment (n.m.r. and mass). The mass spectrum can be explained by the fragmentation pattern in the Scheme. When compound (III) was heated at 250 °C in the presence of Pd-C in xylene, 1-cyanoazulene, m.p. 55°,3 was obtained (25%).

We suggest that compound (III) is formed via a mechanism involving the adduct (IV), which is formed by the homo-1,4-addition of (I) to (II) or by a thermal homo-1,3-carbon shift of the adduct (V) which is formed first

Thermal rearrangement of (IV) to (III) is considered to be a $[_{\sigma}2_{8} + _{\sigma}2_{8} + _{\sigma}2_{8}]$ process and likely to occur, because of the good overlap of the three σ -bonds, and the relief of strain in the three- and four-membered rings.

We thank Dr. Makoto Nitta for helpful suggestions.

(Received, 26th October 1973; Com. 1479.)

† Elemental analysis was satisfactory.

‡ All chemical shifts and coupling constants were confirmed by double and triple resonance experiments.

¹ W. M. Jones, and C. L. Ennis, J. Amer. Chem. Soc., 1967, 89, 3069; L. W. Christensen, E. E. Waali, and W. M. Jones, ibid. 1972, 94, 2118; T. Mukai, T. Nakazawa, and K. Isobe, Tetrahedron Letters, 1968, 565; W. M. Jones, B. N. Hamon, R. C. Joins, and C. L. Ennis, ibid., 1969, 3909.

² C. Jutz, Chem. Ber., 1964, 97, 2050.

⁸ K. Hafner and C. Bernhard, Annalen, 1959, 625, 108.