The Chromium Analogue of Werner's Brown Salt: Isolation of Tris[cis-di-μ-hydroxo-bis(ethylenediamine)chromium(III)]-chromium(III) Nitrate, [Cr{(OH)₂Cr(en)₂}₃](NO₃)₆,aq

By Peter Andersen* and Torsten Berg

[Chemistry Department I (Inorganic Chemistry), H. C. Ørsted Institute, Universitetsparken 5, DK 2100 Copenhagen Ø, Denmark]

Summary The title compound has been isolated from an aqueous ethylenediamine solution of chromium(III) ions by ion-exchange separation followed by precipitation.

In connection with investigations of equilibria in aqueous solution between chromium(III) and ethylenediamine (en)¹ we have isolated $[Cr\{(OH)_2Cr(en)_2\}_3](NO_3)_6$, aq, the chrom-

ium analogue of the tetranuclear cobalt(III) complex often referred to as Werner's brown salt.² It has been isolated from an aqueous solution with the following composition: $[Cr^{III}] = 0.03 \text{ M}$, $[(en)H^+] = 0.4 \text{ M}$, $[(en)H_2^{2+}] = 0.1 \text{ M}$, and $[Cl^-] = 1 \text{ M}$ with NaCl. Chromium(III) was added as $[Cr(en)_3]Cl_3$,aq and the mixture kept at 50 °C for at least 2 days. The chromium species in the resulting mixture

were separated on an ion-exchange column of Sephadex SP-C25. The solution contains mononuclear complexes $\{\text{mainly } cis\text{-}[\text{Cr}(\text{en})_2(\text{OH})_2]^+\}$ and several polynuclear complexes most of which are purple. These were separated by elution with 0·7m-NaCl, and a red band between two purple bands was concentrated (after dilution \times 5) on another column and eluted with 4m-NaClO_4 . Hydrolysis (cleavage of the hydroxo-bridges) of this eluate with 12m-HclO_4 gave a mixture of $cis\text{-}[\text{Cr}(\text{en})_2(\text{H}_2\text{O})_2]^{3+}$ and $[\text{Cr}(\text{H}_2\text{O})_4]^{3+}$ as shown by e.s.r. measurements.

We now added solid LiNO₃ and EtOH to a corresponding 4M-LiNO_3 eluate and after a few hours at $-20\,^{\circ}\text{C}$ red crystals of $[\text{Cr}\{(\text{OH})_2\text{Cr}(\text{en})_2\}_3](\text{NO}_3)_6$, aq precipitated, which could be reprecipitated from 50% EtOH with solid LiNO₃; the crystals were washed with EtOH. We also isolated the iodide by dissolving the nitrate in water, precipitating with NaI, and washing with EtOH.

- ¹ P. Andersen and T. Berg, to be published.
- ² A. Werner, Ber., 1907, 40, 2103
- ³ U. Thewalt, Chem. Ber., 1971, 104, 2657.

Hydrolysis of the nitrate and of the iodide with 9M-HClO_4 saturated with NaClO_4 gave 75 mol-% cis- $[\text{Cr}(\text{en})_2(\text{H}_2\text{O})_2]^{3+}$ and 25 mol-% $[\text{Cr}(\text{H}_2\text{O})_6]^{3+}$ as shown by e.s.r. measurements directly on frozen glycerol glasses of the hydrolysis mixture, and also by ion-exchange separation of the hydrolysis products.

Cr, N, and I analyses were in agreement with the formulae $[Cr\{(OH)_2Cr(en)_2\}_3](NO_3)_6$, aq and $[Cr\{(OH)_2Cr(en)_2\}_3]I_6$, aq. X-Ray powder photographs of the nitrate show that it is isomorphous with the corresponding cobalt(III) salt. A crystal structure analysis of $[Co\{(OH)_2Co(en)_2\}_3](S_2O_6)_3$, aq, obtained by metathesis of Werner's corresponding nitrate, shows that the absolute configuration of the three cobalt atoms surrounding a Λ central cobalt atom is Δ , Δ , and Λ .

(Received, 20th May 1974; Com. 587.)