Preparation, Isolation, and Structure of [NBu₄]⁺[μ-Fe(CO)₄-B₇H₁₂]⁻; Preparation and Isolation of Fe(CO)₄B₇H₁₁: Electrophilic Stabilization of a Heptaborane Species

By ORIN HOLLANDER, WILLIAM R. CLAYTON, and SHELDON G. SHORE*

(Department of Chemistry, Ohio State University, Columbus, Ohio 43210)

Summary The crystalline solids $[NBu_4]^+[\mu-Fe(CO)_4-B_7H_{12}]^-$ and $Fe(CO)_4B_7H_{11}$ have been isolated and the structure of the $[\mu-Fe(CO)_4-B_7H_{12}]^-$ ion has been determined.

THE existence of heptaboranes has been inferred from studies of boron hydride pyrolysis products.¹ However, the validity of some of this work has been questioned.² Indeed, a neutral heptaborane or a heptaborane anion has yet to be isolated and well characterized as a binary hydride species. The $B_7H_{12}^-$ ion was prepared in solution;³ it decomposed above -70° in solution and the isolated tetra-n-butylammonium salt rapidly decomposed upon warming from -78° to room temperature. An attempt to convert $B_7H_{12}^-$ into a neutral boron hydride failed.⁴

We report here the preparation and structure of $[\mu$ -Fe-(CO)₄-B₇H₁₂]⁻ and the preparation of Fe(CO)₄B₇H₁₁. The ion (Figure) is a B₆ pentagonal pyramid with a BH₃ group and an Fe(CO)₄ group inserted into bridging positions between and beneath basal borons. Boron-boron and boron-hydrogen distances fall within observed values for boron hydride structures.⁵ The average B-Fe distance is $2 \cdot 20 \pm 0 \cdot 02$ Å. The position of the Fe(CO)₄ group is as yet undetermined in Fe(CO)₄B₇H₁₁, but is most likely in a bridge site. Both [Bu₄N]⁺[μ -Fe(CO)₄-B₇H₁₂]⁻ and Fe(CO)₄-B₇H₁₁ appear to be stable at room temperature for at least an hour; the latter compound melts at about 20°. These appear to be the first examples of stabilization of boron hydride species by an electron-withdrawing group. Stabilization of boron hydrides such as BH_3 by electron donors is well-known.⁵

FIGURE. The structure of μ -Fe(CO)₄-B₇H₁₂-

 μ -Fe(CO)₄-B₆H₁₀⁶ is smoothly and rapidly deprotonated at a bridging site [equation (1)] as in the case of B₆H₁₀.⁷

μ -Fe(CO)₄-B₆H₁₀ + KH \longrightarrow K⁺ $[\mu$ -Fe(CO)₄-B₆H₈]⁻ + H₂(1)

Proton competition reactions procedurally similar to previously described studies⁸ showed that μ -Fe(CO)₄-B₆H₁₀ is a stronger Brønsted acid than B₆H₁₀.

Crystalline $[NBu_4]^+[\mu$ -Fe(CO)₄-B₇H₁₂]⁻ was isolated as in equations (2) and (3).

$$\begin{array}{c} \mathrm{K}^{+}[\mu \mathrm{-Fe}(\mathrm{CO})_{4} \mathrm{-B}_{6}\mathrm{H}_{9}]^{-} + [\mathrm{NBu}_{4}]^{+} \mathrm{I}^{-} \longrightarrow [\mathrm{NBu}_{4}]^{+} \\ [\mu \mathrm{-Fe}(\mathrm{CO})_{4} \mathrm{-B}_{6}\mathrm{H}_{9}]^{-} \\ + \mathrm{KI} \end{array}$$
(2)

$$[\text{NBu}_4]^+ [\mu\text{-Fe(CO)}_4\text{-B}_6\text{H}_9]^- + 1/2 \quad \text{B}_2\text{H}_6 \longrightarrow [\text{NBu}_4]^+ \\ [\mu\text{-Fe(CO)}_4\text{-B}_7\text{H}_{12}]^-$$
(3)

Crystals of $[NBu_4]^+[\mu\text{-}Fe(CO)_4\text{-}B_7H_{12}]^-$ are of the monoclinic space group $P2_1/c$: a = 10.891(5), b = 11.656(6), c = 23.803(9) Å, $\beta = 90.34(1)^\circ$, Z = 4. At -50° , the intensities of 5770 unique reflections were measured using Mo- K_{α} scintillation counter data of which 2283 were greater than $3\sigma(I)$ and were regarded as observed. Positions of non-hydrogen atoms were located by a combination of direct methods and a Fourier map. There is unresolved partial disorder in the cation. Hydrogen atoms were located by a difference Fourier and a conventional Rof 0.11 was obtained.

Liquid, anhydrous HCl was added at -196° to a known quantity of isolated $K^+[\mu-Fe(CO)_4-B_7H_{12}]^-$. At -110° reaction (4) occurred; one equivalent of H₂ was quantitatively recovered, and no B_2H_6 or μ -Fe(CO)₄- B_6H_{10} was formed.

$$\begin{array}{l} \mathrm{K}^{+}[\mu \mathrm{-Fe}(\mathrm{CO})_{4}\mathrm{-B}_{7}\mathrm{H}_{12}]^{-} + \mathrm{HCl} \longrightarrow \mathrm{Fe}(\mathrm{CO})_{4}\mathrm{B}_{7}\mathrm{H}_{11} \\ & + \mathrm{H}_{2} + \mathrm{KCl} \end{array}$$

The ¹¹B n.m.r. spectrum of Fe(CO)₄B₇H₁₁ in CH₂Cl₂ (¹H decoupled) consists of three broad low-field resonances ($\delta =$ -10.7 -5.3, 0 p.p.m.) and a high-field resonance ($\delta =$ 53.2 p.p.m.). The m.s. of $Fe(CO)_4B_7H_{11}$ at 55 °C included a parent ion group of peaks followed by successive loss of three CO groups. A similar fragmentation behaviour has been reported for $Fe(CO)_4B_6H_{10}$.⁶

We acknowledge support of this work by the National Science Foundation.

(Received, 28th November 1973; Com. 1629.)

¹S. J. Steck, G. A. Pressley, Jr., F. E. Stafford, J. Dobson, and R. Schaeffer, *Inorg. Chem.*, 1970, 9, 2452; A. B. Baylis, G. A. Pressley, Jr., M. E. Jordan, and F. E. Stafford, *J. Amer. Chem. Soc.*, 1966, 88, 929. T. P. Fehlner and W. S. Koski, *ibid.*, 1964, 86, 1012. R. W. Schaeffer, K. H. Ludlum, and S. E. Wiberly, *ibid.*, 1959, 81, 3157.

- ³ J. F. Ditter, J. R. Spielman, and R. E. Williams, *Inorg. Chem.*, 1966, 5, 118.
 ³ H. D. Johnson, II and S. G. Shore, *J. Amer. Chem. Soc.*, 1971, 93, 3798.
 ⁴ H. D. Johnson, II and R. J. Remmel, unpublished results from this laboratory.
 ⁵ W. N. Lipscomb, 'Boron Hydrides,' W. A. Benjamin, New York, 1961.

- A. Davison, D. D. Traficante, and S. S. Wreford, Chem. Comm., 1972, 1155.
 H. D. Johnson, II, R. A. Geanangel, and S. G. Shore, Inorg. Chem., 1970, 9, 908.
- ⁸ H. D. Johnson, II, S. G. Shore, N. L. Mock, and J. C. Carter, J. Amer. Chem. Soc., 1969, 91, 2131.