Reaction of Platinum Dichloride with Bromine: Two Crystal Modifications of a New Mixed Halide

By VIKTOR BONORA, FRL. MARIA JAWORK, and MALCOLM F. PILBROW*

(Institut für Anorganische Chemie 1, Universität Erlangen-Nürnberg, 8520 Erlangen, West Germany)

Summary Platinum dichloride reacts with molecular bromine to give a new mixed halide, Pt₆Cl₁₂Br₂, which exists in two crystal modifications for which X-ray powder and i.r. results are given.

In extending the study of the preparations, properties, and structures of binary platinum halides¹ to mixed halides we have repeated the work of Batsanov and Ruchkin,² who described six compounds of the type PtX_2Y_2 (X, Y = Cl, Br, or I; X \neq Y). The complete results on these systems will be presented elsewhere, but the recent report³ of the formation of $Pt_6Cl_6Br_6$ by reaction of BBr₃ with Pt_6Cl_{12} prompts preliminary communication of our results on the platinum dichloride-bromine system.

Although it was reported earlier² that on shaking platinous chloride in a stream of bromine at *ca.* 25 °C PtCl₂Br₂ was formed, we obtained a red product of stoicheiometry Pt₆Cl₁₂-Br₂† (*cf.* green-brown Pt₆Cl₁₂). The same product is also obtained by stirring Pt₆Cl₁₂ in liquid bromine. A second structural modification, brown β -Pt₆Cl₁₂Br₂, is formed by heating a suspension of the initial product (α) in inert organic solvents.

Thermal gravimetric analyses of both products show bromine loss $(8.8 \pm 0.5\% \text{ for } \alpha, 9.1 \pm 0.5\% \text{ for } \beta; \text{ calc.}$ 9.2%) at 200 \pm 20 °C with production of Pt₆Cl₁₂.

TABLE

X-Ray powder results for α - and β -Pt₆Cl₁₂Br₂

	α			β ^њ Ι	
θ	Ι	hkl	θ	Ί	hkl
5.5	s	100	5.5	s	101
7.8	m	110	7.3	m	110
			9.2	m	021
9.6	m	111	10.7	m	003
11.1	m	200	11.1	m	202
			11.8	w	211
12.5	m	210	12.7	m	030
			13.0	w	113
13.7	m	211	13.3	m	122
			14.7	m	220
			15.0	w	104
16.0	w	220	15.8	m	131
16.8	s	300	16.8	s	303,024
			17.0	m	312
17.8	m	310	18.4	w	214,223
			18.6	w	042,015
22.7	m	400	22.7	w	404,413

^a Hexagonal indexing.

X-ray powder results for α indicate a primitive cubic lattice with a = 798 pm, Z = 1, $D_c = 5.72$, $D_m = 5.5$ g cm⁻³. The powder pattern of β has been rationalised in terms of a rhombohedral unit cell with a = 813 pm,

 \dagger The X-ray data reported earlier² show that that product was probably a mixture of that found here and unchanged platinum dichloride. Of the twenty three lines reported, seven coincide, in position and intensity, with the strongest lines of our product and all but three of the rest can be ascribed to residual Pt₆Cl₁₂.

 $\alpha = 96^{\circ}24', Z = 1, D_c = 5.52, D_m = 5.4 \text{ g cm}^{-1};$ the equivalent hexagonal lattice has a = 1212, c = 1242 pm. X-ray results are given in the Table.

The far i.r. spectra of α and β are very similar to that of Pt_6Cl_{12} with the characteristic vibrations⁴ of the hexamer at 318(vs), 203(s), and 107(m) cm⁻¹ still present. Additional peaks for α at 352(w), 250(wsh), 238(m), and 228(w) cm⁻¹ and for β at 360(m) and 237(mbr) cm⁻¹.[‡] These i.r. results strongly suggest that in the Pt₆Cl₁₂Br₂ compounds the hexameric Pt₆Cl₁₂ units are retained, as is also indicated by the mild conditions used for preparation (cf. ca. 350 °C for

normal oxidation of PtCl₂ to PtCl₄ and ca. 500 °C for decomposition of PtCl₂ into Pt and Cl₂), and that bromine is absorbed by a Pt_6Cl_{12} crystal lattice with concomitant increase in the unit cell size [unit cell volumes ($\times 10^6$): $Pt_6Cl_{12}^1 = 426 \text{ pm}^3$, $\alpha = 508 \text{ pm}^3$, $\beta = 526 \text{ pm}^3$]. The i.r. bands in α and β at *ca*. 240 cm⁻¹ are tentatively assigned to Pt-Br interaction, with 352 (α) and 360 (β) cm⁻¹ bands due to Pt-Cl vibrations arising from slight distortion of the hexameric units.

(Received, 10th May 1974; Com. 532.)

‡ No Raman spectra could be obtained because of decomposition into Pt₆Cl₁₂ at the point of laser incidence.

- ¹ K. Brodersen, G. Thiele, and H. G. von Schnering, Z. anorg. Chem., 1965, **337**, 120; K. Brodersen, G. Thiele, and B. Holle, *ibid.*, **1969**, **369**, 154; G. Thiele and P. Woditsch, Angew. Chem. Internat. Edn., 1969, **8**, 672; M. F. Pilbrow, J.C.S. Chem. Comm., 1972, 270. ² S. S. Batsanov and E. D. Ruchkin, Russ. J. Inorg. Chem., 1959, **4**, 779; *ibid.*, 1965, **10**, 1415. ³ P. M. Druce and M. F. Lappert, J. Chem. Soc. (A), 1971, 3595. ⁴ D. M. Adams, Proc. Chem. Soc., 1961, 335; D. M. Adams, M. Goldstein, and E. F. Mooney, Trans. Faraday Soc., 1963, **59**, 2228; ⁴ B. Medra, C. Margar, Chem. 1964, 365; D. M. Adams, M. Goldstein, and E. F. Mooney, Trans. Faraday Soc., 1963, **59**, 2228;

R. Mattes, Z. anorg. Chem., 1969, 364, 290.