Chain Contraction in Anodic Oxidation of gem-Polysulphides

By JEAN-GABRIEL GOURCY, GEORGES JEMINET, and JACQUES SIMONET*

(Department of Organic Chemistry, University of Clermont-Ferrand, B.P. 45, 63170-Aubiere, France)

Summary Anodic oxidation of some aromatic gem-polysulphides results, unexpectedly, in chain contraction giving in dry solvents an α -disulphide or, in wet solvents, a thiosulphonate.

ANODIC oxidation of sulphides in aqueous organic solvents generally affords the sulphoxide and the sulphone.¹ In aprotic solvents, complex sulphonium salts^{2,3} have been isolated following electro-oxidation. We here report some unexpected results from the anodic oxidation of the *gem*polysulphides (I; R = Ar). In pure MeCN containing

LiClO₄ (0·1M) oxidation of (I) at a platinum anode gives neither the sulphoxide (and sulphone) nor the sulphonium salt. After the passage of 2 F mol⁻¹, the main product is the α -disulphide (II; R = Ar). Carbonyl compounds are generally also present after work up resulting from attack of water on carbocations formed by cleavage of the -C-S⁺bonds. In MeCN-H₂O (90:10 v/v) -S-S- bond formation still occurs. After passage of 6 F mol.^{-1} , the thiosulphonate $RSSO_2R$ (III) is the major product.

This type of oxidation does not depend on the solvent or its acidity since the results are the same in both MeCN and MeNO₂, in the presence or absence of pyridine or NaCO₃. Further, we have checked that the α -disulphide is not

TABLE. Products of anodic oxidation of gem-disulphides

					Dry MeCN	Dry MeCN		$MeCN-H_2O$ (90:10 v/v)		
			Products						Product	
					Coulometry	()	() ^b		Coulometry	(%) ^b
Substrate			x	E^{a}/V	F mol ⁻¹	(II)	(III)	E/V	F mol ⁻¹	(III)
(h-XC,H.S),CH			MeO	+1.2	2.9	70	20	+1.2	5.9	85
(p 11061-40/101-3			Me	$+\overline{1}\cdot\overline{2}$	1.85	80		+1.2	5.7	90
			н	+1.4	$2 \cdot 2$	75	10	+1.2	6.1	80
			NO ₈	+1.8	2.3	50	—		_	—
(<i>p</i> -XC ₆ H ₄ S) ₂	••	• •	н					+1.4	3.6	80

^a Potentials with respect to the Ag/Ag⁺ (0.01M) electrode. ^b Yields are measured by n.m.r. analysis of the mixture after work up.

formed by oxidation (1) of the thiol which could be produced by hydrolysis of the substrate.

$$2 \operatorname{ArSH} - 2 e \longrightarrow \operatorname{ArS-SAr} + 2 H^+$$
 (1)

The results may, however, be rationalised by an E.E.C.C. mechanism (Scheme) involving a dicationic intermediate.

Similar formation of -S-S- bonds (in both dry and wet media) is observed following anodic oxidation of more complex polysulphides. Thus with (V; n = 3, X = Me, OMe, or F), compounds (II; $R = p-XC_{e}H_{4}$) are formed,

$$(p-XC_6H_4S)_nCH_{4-n}$$
(V)

together with p-XC₆H₄SCHO. For higher molecular weight compounds (V; n = 4, X = H, Me, OMe, and F) insolubility prevents electrolysis on a normal scale, but only -S-S- derivatives are present after work-up in the expected yields; dithiocarbonate (-S-CO-S-) intermediates which are possible could be also oxidized according to the Scheme.

One-step chain contraction in gem-polysulphides seems to be possible only by electrochemical means. When R is aliphatic, the results are different because the intermediate sulphonium salt (IV) is relatively stable and can be isolated.

(Received, 17th April 1974; Com. 429.)

¹ V. D. Parker in 'Organic Electrochemistry,' ed. M. M. Baizer, Marcel Dekker, New York, 1973, pp. 552-553.

² P. T. Cottrel and C. K. Mann, J. Electrochem. Soc., 1969, 116, 1449.

*S. Torii, Y. Patsuyama, K. Kawasaki, and K. Uneyama, Bull. Chem. Soc. Japan, 1973, 46, 2912; S. Torri and K. Uneyama, Tetrahedron Letters, 1972, 44, 4513.