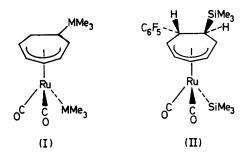
Trimethylsilyl and Trimethylgermyl Group Migration from Ruthenium to Cycloheptatriene: Crystal Structure of [Ru(SiMe₃)(CO)₂C₇H₇(C₆F₅)(SiMe₃)]

By Judith A. K. Howard, Selby A. R. Knox, Victor Riera, Barrie A. Sosinsky, F. Gordon A. Stone,* and Peter Woodward

(Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

Summary Cycloheptadienyl complexes $[Ru(MMe_3)(CO)_2-(C_7H_8MMe_3)]$ (M = Si or Ge) are formed on reaction of $Ru(MMe_3)_2(CO)_4$ with cycloheptatriene; an X-ray diffraction study on $[Ru(SiMe_3)(CO)_2C_7H_7(C_6F_5)(SiMe_3)]$ has established an exo-configuration for the migrant SiMe₃ group.

Initially it was thought that reaction between triphenyltin(pentacarbonyl)manganese and tetraphenylcyclopentadienone afforded a complex with a tin-manganese bond, but subsequently it was realised that the product is a cyclopentadienyl complex [Mn(CO)₃(C_5H_4 OSnPh₃)]. We now describe reactions which suggest that migration of organosilicon and -germanium ligands from transition metals to co-ordinated hydrocarbons can occur very readily.


The compounds $[Ru(MMe_3)_2(CO)_4]$ (M = Si, Ge) react with cycloheptatriene in heptane at reflux to give in high yield liquid cycloheptadienyl complexes $[Ru(MMe_3)(CO)_2(C_7H_8-MMe_3)]$ (I). The proton-coupled ¹³C n.m.r. spectrum of

(I; M = Ge) supports the formulation. Quartet resonances at $-4\cdot19$ p.p.m. (upfield of Me₄Si) and $4\cdot67$ p.p.m. (downfield of Me₄Si) are assigned to the methyl carbons of GeMe₃ groups attached to ring carbon and ruthenium atoms respectively. The carbon atom carrying the GeMe₃ group appears as a doublet at $24\cdot54$ p.p.m. with the ring methylene carbon showing as a triplet at $46\cdot35$ p.p.m. The resonances of the remaining five essentially sp^2 carbons of the cycloheptadienyl ligand occur as the expected doublets at $80\cdot97$, $88\cdot37$, $90\cdot43$, $102\cdot78$, and $104\cdot99$ p.p.m. The ¹H n.m.r. spectra of the complexes support the assignment; for (I; M = Ge) τ $4\cdot80$ (2H, m), $5\cdot27$ (2H, m), $6\cdot12$ (1H, m), $7\cdot57$ (2H, m), $9\cdot47$ (1H, m), $9\cdot83$ (9H, s), $10\cdot02$ (9H, s).

An X-ray diffraction study on a crystalline derivative (II) [m.p. 165°; $\nu_{\rm co}$ (hexane) 2021s, 1971s cm⁻¹; τ 4·72 m (3H), 5·16 m (1H), 6·40m (1H), 7·29m (2H), 9·90s (9H), 10·38s (9H)], prepared from Ru(SiMe₃)₂(CO)₄ and 7-C₆F₅C₇H₇, has confirmed the MMe₃ migration.

Crystals of [Ru(SiMe₃)(CO)₂C₇H₇(C₆F₅)(SiMe₃)] are mono-

clinic, Cc, with four molecules in a unit cell: a=6.798 (2), b=17.057(5), c=21.157(6) Å, $\beta=91.61(2)^{\circ}$. The structure was solved by conventional heavy-atom methods from data collected on a Syntex $P2_1$ four-circle diffractometer to $2\theta=50^{\circ}$ (Mo- K_{α} X-radiation); R 0.070.

In the 7-membered ring (Figure), five of the atoms C(1,2,3,4,5) are substantially coplanar and are π -bonded to the Ru atom at distances 2·25, 2·26, 2·19, 2·28, and 2·43 Å (all \pm ca. 0·02 Å). The other two C atoms in the ring C(6,7) deviate from the C(1,2,3,4,5) plane to give a twisted configuration on the side away from the Ru atom; this ring twist is best seen from the torsion angles: C(1,2,3,4) = -4° , C(2,3,4,5) = $+2^{\circ}$, C(3,4,5,6) = -45° , C(4,5,6,7) = $+31^{\circ}$, C(5,6,7,1) = -37° , C(6,7,1,2) = -89° , and C(7,1,2,3) = $+60^{\circ}$. The bond angles around C(6) and C(7) are close to tetrahedral with the SiMe₃ group in an exo-configuration and the C₆F₅ group in an endo-configuration with respect to the metal. The ruthenium atom carries one SiMe₃ group (Ru–Si = 2·43 Å) and two CO groups in an approximately orthogonal relationship. It is perhaps noteworthy that the longest Ru–C bond [to C(5)] lies trans to the SiMe₃ group.

The quantitative formation of the complexes (I) suggests that MMe₃ group migration is intramolecular, so that the migrant group would be expected to occupy a position on

¹ R. D. Gorsich, J. Amer. Chem. Soc., 1962, 84, 2486.

the hydrocarbon endo with respect to the metal, and not the exo configuration observed. In order to establish the nature of the reaction, an equimolar mixture of $\text{Ru}(\text{SiMe}_3)_2(\text{CO})_4$ and $\text{Ru}(\text{GeMe}_3)_2(\text{CO})_4$ was treated with cycloheptatriene and the ^{13}C n.m.r. of the products examined.

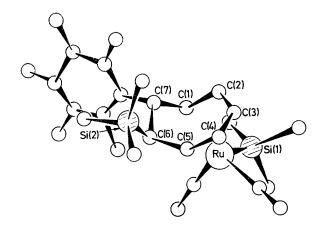


FIGURE. X-Ray crystal structure of $Ru(SiMe_3)(CO)_2C_7H_7-(C_6F_5)(SiMe_3)$ (II).

The major products detected were (I; M = Si) and (I; M = Ge), with traces of $Ru(MMe_3)(CO)_2(C_7H_6)$ (M = Si, Ge) and a species tentatively identified as $Ru(GeMe_3)(CO)_2-(C_7H_8SiMe_3)$. It would thus appear that formation of "cross-over" products such as the latter reflects a minor reaction pathway, and that the migrations are essentially intramolecular.

We thank the S.R.C. for support.

(Received, 4th June 1974; Com. 640.)

² R. D. Gorsich, J. Organometallic Chem., 1966, 5, 105.