# Preparation and $\boldsymbol{X}$-Ray Crystallographic Characterisation of an Unusual Heteronuclear Complex, $\mathbf{R h A g}_{2}\left(\mathrm{C}_{=} \mathrm{CC}_{6} \mathbf{F}_{5}\right)_{5}\left(\mathbf{P P h}_{3}\right)_{3}$ 

By Omar M. Abu Salah and Michael I. Bruce* $\dagger$<br>(Department of Inorganic Chemistry, The University, Bristol, BS8 ITS)<br>and Melvyn Rowen Churchill* and Barry G. DeBoer<br>(Department of Chemistry, University of Illinois at Chicago Circle, Box 4348, Chicago, Illinois 60680)

Summary The complex $\mathrm{RhAg}_{2}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{~F}_{5}\right)_{5}\left(\mathrm{PPh}_{3}\right)_{3}$, prepared from $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{Ag}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{~F}_{5}\right)$, contains a central rhodium atom which is octahedrally coordinated to one $\mathrm{PPh}_{3}$ ligand and five $\sigma$-acetylide units; each $\mathrm{PPh}_{3} \mathrm{Ag}$ group is $\pi$-bonded to three acetylenic bonds (one acetylenic linkage thereby being involved with both silver atoms); rhodium-silver distances are $3.086(\mathrm{I})$ and 3•102(1) $\AA$.

The reaction between $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{Ag}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{~F}_{5}\right)$ in tetrahydrofuran affords the hexanuclear cluster $\mathrm{Rh}_{2} \mathrm{Ag}_{4}{ }^{-}$ $\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{~F}_{5}\right)_{8}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{I})$ [which is presumed to be isostructural with $\mathrm{Ir}_{2} \mathrm{Cu}_{4}(\mathrm{C} \equiv \mathrm{CPh})_{8}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{2}$ ] and the binuclear species $\operatorname{RhAg}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{~F}_{5}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{3}$ (II). From 1,2-dimethoxyethane, a third, trinuclear, complex can be isolated, of stoicheiometry $\mathrm{RhAg}_{2}\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{~F}_{5}\right)_{5}\left(\mathrm{PPh}_{3}\right)_{3}$ (III). The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum of (III) showed two types of $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups in
a 1:4 ratio, well-resolved signals with the usual 2:1:2 intensity pattern being found at $134 \cdot 5,159$, and 163.5 (intensity 1) and 137, 160, and $164 \cdot 5$ p.p.m. (intensity 4).

The detailed molecular geometry of (III) has been determined via a single-crystal $X$-ray structural analysis.

Crystal data: $\mathrm{C}_{94} \mathrm{H}_{45} \mathrm{Ag}_{2} \mathrm{~F}_{25} \mathrm{P}_{3} \mathrm{Rh}, M=2060 \cdot 9$, monoclinic, $a=15 \cdot 902(2), b=21 \cdot 497(3), c=25 \cdot 041(3) \AA, \beta=102 \cdot 00-$ $(1)^{\circ}, \quad U=8373.5 \AA^{3}, \quad D_{\mathrm{m}}=1.627(5), \quad D_{\mathrm{c}}=1.635 \mathrm{~g} \mathrm{~cm}^{-3}$, $Z=4$, space group $P 2_{1} / n$.

Diffraction data complete to $2 \theta=40^{\circ}$ ( $\mathrm{Mo}-K_{\alpha}$ radiation) were collected with a Picker FACS-1 diffractometer and were corrected for Lorentz, polarization, and absorption ( $\mu=7.95 \mathrm{~cm}^{-1}$ ) effects. The structure was solved via a combination of Patterson, Fourier, and least-squares refinement techniques. All 125 non-hydrogen atoms have been accurately located, $\ddagger$ the present discrepancy index being $R 6.8 \%$ for the 7820 independent reflections (no data being rejected).
$\dagger$ Present address: Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia, 5001.
$\ddagger$ Two phenyl groups are subject to disorder and have been resolved.
E.s.d.'s are $c a .0 .001 \AA$ for metal-metal, ca. 0.002 for $\AA$ metal-phosphorus, and $c a .0 .01 \AA$ for (light atom)-(light atom) vectors.


The geometry of the $\mathrm{RhAg}_{2}(\mathrm{C} \equiv \mathrm{C}-\mathrm{C})_{5}(\mathrm{P})_{3}$ 'core' of the molecule is illustrated in the Figure. The rhodium atom is in essentially regular octahedral co-ordination to one $\mathrm{PPh}_{3}$ ligand $[\mathrm{Rh}-\mathrm{P}(3)=2 \cdot 342 \AA$ ] and five $\sigma$-acetylides [ $\mathrm{Rh}-\mathrm{C}$ $(\mathrm{la})=2.04, \mathrm{Rh}-\mathrm{C}(\mathrm{lb})=2.01, \mathrm{Rh}-\mathrm{C}(\mathrm{lc})=2.03, \mathrm{Rh}-\mathrm{C}(1 \mathrm{~d})$ $=2.02, \mathrm{Rh}-\mathrm{C}(\mathrm{le})=2.02 \AA \mathrm{~J}$. The acetylenic bonds, $\mathrm{C}(1)-$
$\mathrm{C}(2)$, are $1 \cdot 19-1 \cdot 22 \AA$ in length, while the $\mathrm{C}-\mathrm{C}_{6} \mathrm{~F}_{5}$ [C(2)$\mathrm{C}(3)]$ distances range from $1 \cdot 43$ to $1 \cdot 46 \AA$.
The silver atoms are each in essentially tetrahedral co-ordination environments.
Atom $\operatorname{Ag}(1)$ is linked asymmetrically to three acetylenic bonds, with $\mathrm{Ag}(1)-\mathrm{C}(\mathrm{la})=2 \cdot 52, \mathrm{Ag}(1)-\mathrm{C}(2 \mathrm{a})=2 \cdot 87, \mathrm{Ag}$ $(\mathrm{l})-\mathrm{C}(\mathrm{lb})=2 \cdot 48, \mathrm{Ag}(1)-\mathrm{C}(2 \mathrm{~b})=2 \cdot 79, \mathrm{Ag}(\mathrm{l})-\mathrm{C}(\mathrm{lc})=2 \cdot 49$, and $\mathrm{Ag}(1)-\mathrm{C}(2 \mathrm{c})=2 \cdot 69 \AA$. Atom $\mathrm{Ag}(2)$ is similarly bonded, with $\mathrm{Ag}(2)-\mathrm{C}(\mathbf{1 a})=2 \cdot 64, \quad \mathrm{Ag}(2)-\mathrm{C}(2 \mathrm{a})=3 \cdot 13$, $\mathrm{Ag}(2)-\mathrm{C}(1 \mathrm{~d})=2 \cdot 64, \quad \mathrm{Ag}(2)-\mathrm{C}(2 \mathrm{~d})=2 \cdot 99, \quad \mathrm{Ag}(2)-\mathrm{C}(1 \mathrm{e})=$ $2 \cdot 34$, and $\operatorname{Ag}(2)-\mathrm{C}(2 \mathrm{e})=2 \cdot 60 \AA$. Silver-phosphorus distances are $\operatorname{Ag}(1)-\mathrm{P}(1)=2.388$ and $\operatorname{Ag}(2)-\mathrm{P}(2)=2 \cdot 389 \AA$.

The rhodium-silver distances, $\mathrm{Rh}-\mathrm{Ag}(1)=3.086 \AA$ and $\mathrm{Rh}-\mathrm{Ag}(2)=3 \cdot 102 \AA$, are longer than that expected for rhodium-silver single bonds [ca. $2.790 \AA$, based upon $(\mathrm{Rh}-\mathrm{Rh})_{\min }=2 \cdot 690 \AA$ and $(\mathrm{Ag}-\mathrm{Ag})_{\min }=2.889 \AA$ in the pure metals ${ }^{2}$ ]. This, in conjunction with the otherwise normal octahedral and tetrahedral geometry around the rhodium and silver atoms (respectively), leads us to prefer a zwitterionic structure based upon RhIII and AgI rather than the alternative metal-metal bonded structure based on $\mathrm{Rh}^{\mathrm{v}}$ and $\mathrm{Ag}^{0}$.
This research was supported by the International Copper Research Association, Inc., New York (O.M.A.S.) and the National Science Foundation (M.R.C.). Computing services were provided by the Computer Center of the University of Illinois at Chicago Circle.
(Received, 17th June 1974; Com. 708.)

[^0]
[^0]:    ${ }^{1}$ O. M. Abu Salah, M. I. Bruce, M. R. Churchill, and S. A. Bezman, J.C.S. Chem. Comm., 1972, 858; M. R. Churchill and S. A. Bezman, Inorg. Chem., 1974, 13, 1418.
    ${ }^{2}$ 'International Tables for $X$-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962, Table 4.3, pp. 278-285.

