The Synthesis of a Trifluorophosphorane and a Diazadiphosphetidine Containing the Perfluoropinacolyl Ring System

By JAMES A. GIBSON* and GERD-VOLKER RÖSCHENTHALER*

(Lehrstuhl B für Anorganische Chemie der Technischen Universität, 33 Braunschweig, Pockelsstraße 4, Germany)

Summary Perfluoropinacolyltrifluorophosphorane is prepared by reaction of PF_{δ} with perfluoropinacolyl-bis-(trimethylsilyl)aminodifluorophosphorane (1); (1) yields a diazadiphosphetidine on pyrolysis.

PERFLUOROPINACOL can form chelate ring systems of high stability for a number of heteroatoms.¹ Oxidation reactions of PIII compounds with hexafluoroacetone yield phosphoranes containing the pinacolyl ring system.² Monoand difluorophosphoranes have also been prepared in this way.³ We now report the synthesis of the parent compound of these fluorophosphoranes and the preparation of

$$(Me_{3}Si)_{2}NPF_{2} + 2(CF_{3})_{2}CO \longrightarrow (Me_{3}Si)_{2}N - P - CF_{3} = (I)$$

(1)
 $(1) - CF_{3} = (I)$

the first diazadiphosphetidine involving the perfluoropinacolyl unit, from an organosilicon aminodifluorophosphorane precursor (1). (1) was prepared by the reaction of bis(trimethylsilyl)aminodifluorophosphine⁴ with hexafluoroacetone [equation (I)].

Attempts at the oxidation of PF_3 with hexafluoroacetone have not been successful. The reaction of (1) with PF_5 , however, produced perfluoropinacolyltrifluorophosphorane

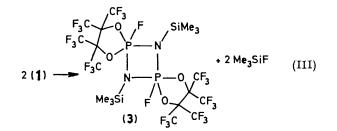
(1) + PF₅
$$\rightarrow$$
 F $\stackrel{F}{\rightarrow}$ F $\stackrel{F}{\rightarrow}$ \stackrel{F}

(2) in 70% yield [equation (II)]. No evidence was found for a $F_3P=N$ -group linked to phosphorus. (2) is a liquid (b.p. 55°, m.p. -10°) which fumes strongly in air, and is one of the few examples of a dioxytrifluorophosphorane.⁶

(1) was also found to eliminate Me_3SiF above 150° to give quantitatively a phosphetidine (3) which was a stable white solid (m.p. 102-103°) [equation (III)].

The elemental analyses and mass spectra of (1), (2), and (3) are consistent with the molecular composition. The compounds did not show molecular ions. For (2) the

TABLE


N.m.r. data of (1), (2), and (3)

$\delta_{\mathbf{F}}$ (p.p.m.)					
Compound	δ _H a (p.p.m.)	(CF ₈)	- (PF)	δ _P ^c (p.p.m.)	$J_{\mathbf{PF}}$ (Hz)
(1) ^d	-0.66	+67.8 + 68.7	+38.6	+40.2	876
(2)e		+68.8	+65.2	+54.5	935f
(3) ^g	-0.25	+67.1 +70.3	+69.5	+47.5	994 ^h

^a Measured at 60 MHz relative to internal Me₄Si reference. ^b Measured at 56.4 MHz relative to internal CCl₂F reference. ^c Measured at 24.3 MHz relative to external 85% H₃PO₄ reference. ^d 50% solution in CH₂Cl₂. ^e Neat liquid. ^f ${}^{4}J_{PF}$ 0.8 Hz; ${}^{5}J_{FF}$ 2.1 Hz. ${}^{4}J_{2}J_{2}$ solution in CCl₄. ^h $|{}^{1}J_{PF} + {}^{3}J_{PF}|$.

highest mass peak was $(M - F)^+$ (low abundance of M^+ is common for fluorophosphoranes⁶) while for (1) and (3) peaks due to $(M - Me)^+$ were observed (typical for Me₃Si containing substances⁷). The base peak in the fragmentation patterns of (1), (2), and (3) was the ion CF_3^+ and the characteristic breakdown of the remaining pinacolyl unit was also found. The presence of this unit was indicated by absorptions¹ in the i.r. spectra. The ambient temperature n.m.r. data are listed in the Table.

The fluxional character of these compounds is of considerable interest, e.g. the temperature-dependent nonequivalence of sets of CF_3 groups in (1) and (3). Hyperfine coupling constants were observed consistent with the structures shown. Similar effects have been found by other workers⁸ and the relevant spectra are at present under investigation.

We thank S.R.C.-N.A.T.O. and Deutsche Forschungsgemeinschaft, for a postdoctoral fellowship (to J. A. G.) and financial support.

(Received, 10th June 1974; Com. 671.)

¹ M. Allen, A. F. Janzen, and C. J. Willis, *Canad. J. Chem.*, 1968, 46, 3671. ⁸ D. Hellwinkel, 'Organophosphorus Compounds,' 2nd edn., ed. G. M. Kosolapoff and L. Maier, 1972, vol. 3, 185; F. Ramirez, Synthesis, 1974, 90.

V. N. Volkovitskii, I. L. Knunyants, and E. G. Bykhovskaya, Zhur. Vsesoyuz. Khim. obshch. im. D. I. Mendeleeva, 1973, 18, 112, 236.

- ¹² E. Niecke and W. Flick, '4th European Symposium on Fluorine Chemistry,' Ljubljana, 1972, Abs. I—12.
 ⁴ D. E. Young and W. B. Fox, *Inorg. Nuclear Chem. Letters*, 1971, 7, 1033; M. Eisenhut and R. Schmutzler, *Chem. Comm.*, 1971, 1452.
 ⁴ J. A. Blazer, R. Schmutzler, and I. K. Gregor, Z. Naturforsch., 1969, 24b, 1081.
- 7 T. R. Spalding, 'Mass Spectrometry of Inorganic and Organometallic Compounds,' ed. M. R. Litzow and T. R. Spalding, Elsevier, London, 1973, 207.

⁸ S. Trippett and P. J. White, J.C.S. Perkin I, 1973, 2303.