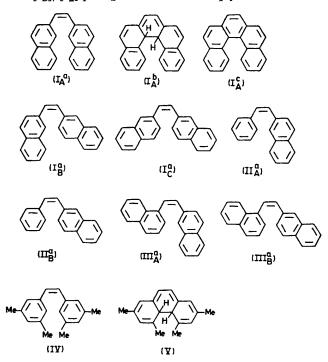
## The Role of Conformers in the Reversible Photocyclisation of cis-1,2-Diarylethylenes. A Flash-photolytic Study

By TMIMA WISMONSKI-KNITTEL, TUVIA BERCOVICI, and ERNST FISCHER\* (Department of Structural Chemistry, Weizmann Institute of Science, Rehovot, Israel)


Summary Flash-photolytic experiments showed that the photocyclisation of 1,2-di(2-naphthyl)ethylene, (I<sup>a</sup>), results in the formation of two isomeric 4a,4b-dihydrophenanthrenes derived from two of the possible three conformers of (I<sup>a</sup>), and differing in thermal stability by a factor of  $10^{10}$ .

 $(III_{A}^{*}) \rightleftharpoons (III_{B}^{*})$ . MO theory predicts<sup>5-9</sup> that  $(II_{A}^{b})$  should be formed exclusively, while  $(I_{B}^{b})$  and  $(III_{B}^{b})$  should be formed to some extent,<sup>8,9</sup> though  $(I_{A}^{b})$  and  $(III_{A}^{b})$  should be the major products of photocyclisation.

Flash photolysis<sup>10</sup> of (I<sup>a</sup>) in methylcyclohexane at room temperature was shown to give, in addition to the stable  $(I_A^b)$ , a transient X with a half-life of the order of  $10^{-4}$ seconds, and characterised by peaks at around 570, 530 and 500 nm. From studies of the decay rate of X in a wide temperature range, we calculated an Arrhenius critical increment of  $12 \text{ k cal mol}^{-1}$  for  $X \to (I^{a})$ . The photoformation of  $(I_{A}^{b})$  is sharply temperature-dependent<sup>2,4</sup> and stops completely below  $-30^{\circ}$ . In contrast, X is formed even at  $-140^{\circ}$ , and thus remains the sole unstable photoproduct below  $-30^{\circ}$ . Oxidation of X with iodine irradiated at 546 + 576 nm ("atomic iodine")<sup>2,3</sup> at  $-100^{\circ}$ yielded  $(I_B^{\circ})$ , i.e. the oxidation product expected from  $(I_B^{\circ})$ . We therefore feel justified to identify X as  $(I_B^b)$ , as distinct from  $(I_A^b)$ . The thermal instability of  $(I_B^b)$  makes its quantitative oxidation impossible.  $(I_B^b)$  is completely photoerasable with light in the visible region, down to at

In solution, *cis*-1,2-di(2-naphthyl)ethylene, (I<sup>a</sup>), is assumed to exist as an equilibrium mixture of the three almost isoenergetic conformers  $(I^a_A) \rightleftharpoons (I^a_B) \rightleftharpoons (I^a_C)$ . (Subscripts A, B, C refer to the various conformers, and superscripts a, b, c denote the *cis*-ethylene, the corresponding dihydrophenanthrene analogue, and its oxidation product, respectively). Nevertheless, at room temperature, photocyclisation to the corresponding 4a,4b-dihydrophenanthrene (DHP) derivative, and photocyclodehydrogenation to the corresponding dibenzophenanthrene, give exclusively  $(I^b_A)^{1-4}$  and  $(I^c_A)$ ,<sup>5,6</sup> respectively, derived from conformer  $(I^a_A)$ . A similar situation exists<sup>4,6</sup> with the related compounds (II) and (III), each of which is assumed to exist in solution as a mixture of two conformers:  $(II^a_A) \rightleftharpoons (II^a_B)$ ,

least  $-180^{\circ}$ . Its main absorption peaks in the visible are red-shifted by about 150 nm in comparison with  $(I_{A}^{b})$ . Above  $-30^\circ$ , when both DHP's are formed, the ratio  $R = [I_B^b]/[I_A^b]$  per light-flash varies sharply with the wave-



length of the active light. Thus at 20° R is ca. 1.3 at >340nm, and ca,  $4 \cdot 2$  at 300 - 340 nm. We suggest that this results largely from preferential absorption of light at longer wavelengths by  $(I^{\bullet}_{A})$ , thereby increasing the apparent yield of  $(I_{A}^{b})$  at such wavelengths. We estimate the apparent quantum yield of the photoformation of  $(I_B^b)$  as about 0.05 at 313 nm and 20°. For  $(I_A^b)$  at 366 nm we found 0.03.

An activation energy of  $12 \pm 0.5$  kcal mol<sup>-1</sup> was found for  $(I_B^b) \rightarrow (I_B^a)$ , as compared with 27  $\pm 1$  kcal mol<sup>-1</sup> for  $(I_A^b) \rightarrow (I_A^a)$ . As a result, the former process is about 10<sup>10</sup> times faster than the latter. This explains the failure to produce  $(I_B^{\circ})$  during photocyclodehydrogenation of (I) at room temperature.8,6

With compound (III) a short-lived transient similar to X was observed (peaks at 603, 570, and 540 nm) and identified as (III<sup>b</sup><sub>B</sub>) by oxidation to (III<sup>c</sup><sub>B</sub>). However, in this case both  $(III_{A}^{b})$  and  $(III_{B}^{b})$  are formed down to  $-180^{\circ}$ , with  $(III_{A}^{b})$  predominating. Here too  $(III_{B}^{b})$  is formed preferentially at short wavelengths. At 20° the approximate quantum yields of photoformation were 0.003 for  $(III_B^b)$  at 313 nm and 0.06 for  $(III_A^b)$  at 334 nm. Combined u.v. and visible flash photolysis proved that  $(III_B^b)$  is photoerasable with visible light. From the temperature dependence  $(III_B^b) \rightarrow (III_B^a)$  a critical increment of 11.5 kcal mol<sup>-1</sup> was calculated. For  $(III_{A}^{b}) \rightarrow (III_{A}^{a})$  the value is 18.5. In this context it should be mentioned that for the strongly-hindered cyclisation product<sup>11</sup> (V) of (IV) we found<sup>12</sup> an activation energy of only  $7 \text{ kcal mol}^{-1}$  for  $(V) \rightarrow (IV)$ , the lowest value observed so far<sup>1,4,13</sup> for this type of reaction.

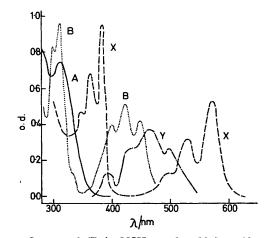



FIGURE. Compound (I) in MCH, ca.  $3 \times 10^{-5}$  M. Absorption spectra of (I)-curve A,  $(I_A^b)$ -curve B,  $(I_B^b)$ -curve X, and Y. The three latter curves were extrapolated from experimental ones, assuming reasonable extents of photoconversion. For orientation only, the molar extinction coefficient of  $(I^{*})$  at 425 nm is about 12,000.

Finally, flash experiments showed that  $(I_A^b)$  is formed from  $(I_{A}^{*})$  via a transient Y with a half-life of about 10 s at 20°. Its absorption spectrum is somewhat red-shifted relative to  $(I_{A}^{b})$ . From the temperature dependence of  $Y \rightarrow (I_A^b)$  we calculated an activation energy of  $15 \pm 0.5$ kcal mol<sup>-1</sup>. Oxygen has no effect on Y. In the absence of other evidence for its structure, we suggest that Y is an unstable steric isomer of  $(I_A^b)$ . This appears plausible in view of the pronounced steric interactions in  $(I_A^b)$ .<sup>9</sup>

The absorption spectra of (I) are summarized in the Figure.

(Received, 29th May 1974; Com. 612.)

- <sup>1</sup> E. V. Blackburn, C. E. Loader, and C. J. Timmons, J. Chem. Soc., (C), 1970, 163.
- T. Knittel, G. Fischer, and E. Fischer, J.C.S. Chem. Comm., 1972, 85.
  T. Knittel-Wismonski, G. Fischer, and E. Fischer, Tetrahedron Letters, 1972, 28, 2853.
- <sup>4</sup> T. Knittel-Wismonski, G. Fischer, and E. Fischer, submitted for publication.
- M. Scholz, M. Muhlstadt, and F. Dietz, Tetrahedron Letters, 1967, 665.
  Ch. Goedicke and H. Stegemeyer, Ber. Bunsengesellschaft Phys. Chem., 1969, 73, 782.

<sup>7</sup> W. H. Laarhoven, Th. J. H. M. Cuppen, and R. J. F. Nivard, *Rec. Trav. chim.*, 1968, 87, 687. <sup>8</sup> S. Sharafi-Ozeri and K. A. Muszkat, *Chem. Phys. Letters*, 1973, 20, 397. Muszkat and Sharafi have meanwhile detected a mistake in their calculation of the reactivity index for the photoformation of  $(III_B^h)$ . The correct relative values are 0.024 for  $(III_A^a) \rightarrow (III_B^h)$ . and 0.008 for  $(III_B^*) \rightarrow (III_B^*)$ . • K. A. Muszkat, S. Sharafi-Ozeri, G. Seger, and T. A. Pakkanen, submitted for publication. 10 T. Bercovici, R. Heiligman-Rim, and E. Fischer, *Mol. Photochem.*, 1969, 1, 23; E. Fischer, *Mol. Photochem.*, 1970, 2, 99.

- <sup>11</sup> A. Bromberg, K. A. Muszkat, and E. Fischer, Israel J. Chem., 1972, 10, 765.
- <sup>12</sup> D. Heyman and E. Fischer, unpublished results.
- <sup>18</sup> K. A. Muszkat and E. Fischer, J. Chem. Soc., (B), 1972, 662.