A Novel Route to Anthrasteroids: X-Ray Crystal Structure of $\mathbf{1}(10 \rightarrow 6)$ abeo-Cholesta-5,7,9-trien-3-yl p-Bromobenzoate

By Nigel Bosworth, John M. Midgley, Christopher J. Moore, and W. Basil Whalley*

(The School of Pharmacy, The University, London WCIN IAX, England)
and George Ferguson and Wayne C. Marsh
|Department of Chemistry, The University, Guelph, Ontario, Canada)

Summary Treatment of the adduct from a steroidal 5,7diene, and 4 -phenyl-1,2,4-triazoline-3,5-dione, with boron trifluoride-diethyl ether gives the corresponding anthrasteroid whose structure was determined by X-ray crystallography.

Anthrasteroids, frequently of ill defined stereochemistry, have previously been prepared, in unsatisfactory yield, by the vigorous action of acidic reagents upon unsaturated steroids. ${ }^{1}$ We now report a superior route commencing from steroidal 5,7-dienes.

(1)

(2)

Thus, the adduct, type ($\mathbf{1} ; \mathrm{R}=\mathrm{H}, \mathrm{Ac}$, or PhCO), of a steroidal 5,7 -diene, and 4 -phenyl-1,2,4-triazoline- 3,5 -dione, is treated at room temperature in solution in benzene with $\mathrm{BF}_{8} \mathrm{Et}_{2} \mathrm{O}$, when oxidative rearrangement occurs smoothly to give the corresponding anthrasteroid, type ($2 ; \mathrm{R}=\mathrm{Ac}$, PhCO), in which the original stereochemistry of the appropriate centres is preserved. For example, the adduct (1; R $=\mathrm{H}$), m.p. 141-143 ${ }^{\circ}$, from 7-dehydrocholesterol yields ($2 ; \mathrm{R}=\mathrm{H}$), having appropriate spectral and analytical properties.

The structure of (2) was established via a single crystal X-ray analysis of the p-bromobenzoate (2; $\mathrm{R}=p-\mathrm{Br}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$). The crystals are monoclinic, space group C2,

Figure 1. An ORTEP plot of ($2 ; \mathrm{R}=p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CO}$).
$a=25 \cdot 853(3), b=12 \cdot 102(1), c=10 \cdot 049(1) \AA, \beta=104 \cdot 38$ (2) ${ }^{\circ}$. Three-dimensional data were obtained using Mo- K_{α} radiation and a Hilger \& Watts four-circle diffractometer fitted with a graphite monochromator. The structure was solved by the heavy-atom method, and refined by leastsquares methods to a final R of $7 \cdot 6 \%$ for 1684 observed reflections. The aromatic nature of ring B in the molecule (Figure 1) is determined by the planarity of the ring (see Figure 2) the equivalence of its bond lengths (mean value $1.390 \AA$) and the location of the hydrogen atom on $C(7)$.

Figure 2. Torsion angles within the ring system in one anthrasteroid ($2 ; \mathrm{R}=p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CO}$).
The α-orientation of the hydroxy-group in the anthrasteroid ($2 ; \mathrm{R}=\mathrm{H}$) adumbrates the mechanism of this rearrangement; this will be discussed in our full paper.
This route to anthrasteroids appears to be of general applicability, and has been applied to ergosterol, and to the 5,7-dienes derived from, e.g., stigmasterol, pregnenolone, dehydro-isoandrosterone, etc; the yield in the two-step process from the diene is generally greater than 90%.
(Received, 17th July 1974; Com. 883.)
${ }^{1}$ See for example N. L. Wendler, 'Molecular Rearrangements', vol. 2, ed. P. de Mayo, Interscience, New York, 1964, pp. 1019, 1063 and references cited therein.

