cis-trans-Isomerization of PtCl₂(PEt₃)₂. The Case for a Consecutive Displacement Mechanism

By JOHN POWELL* and DAVID G. COOPER

(Lash Miller Chemical Laboratories, University of Toronto, Toronto M5S 1A1, Ontario, Canada)

Summary Recently reported data thought to be contrary to the consecutive displacement mechanism for PR_{3} catalysed isomerization of $PtCl_2(PEt_3)_2$ are in fact fully consistent with this mechanism of isomerization.

IN a recent communication concerning the mechanism of PR_3 catalysed *cis-trans*-isomerization of $PtCl_2(PEt_3)_2$ the following observations were reported.1 (i) In n-hexane- CH_2Cl_2 solution isomerization of trans- $PtCl_2(PEt_3)_2$ (ca. 10^{-4} M) to cis-PtCl₂(PEt₃)₂ catalysed by excess of PEt₃ has half lives of the order of seconds at 15 °C. (ii) Addition of an excess of chloride to [PtCl(PEt₃)₃]ClO₄ in MeOH-CH₂Cl₂n-hexane gave no observable reaction (u.v.). (iii) PPh3 catalysed the trans- to cis-isomerization. (iv) Addition of excess of PEt₃ to cis-PtCl₂(PPh₃)₂ in CH₂Cl₂-MeOH followed 10 min later by isolation of a crystalline product yielded predominantly cis-PtCl₂ (PPh₃)₂ (characterized by u.v. and microanalysis). It was concluded that observations (ii) and (iv) are inconsistent with the consecutive displacement mechanism of isomerization.¹ In this communication, we show this conclusion to be erroneous.

On the basis of (ii), it was concluded that the forward reaction of equation (I) must be slow. In fact, no reaction
$$b_{\bullet}$$

$$PtCl(PEt_{3})_{3}^{+} + Cl^{-} \underset{k_{b}}{\overset{\sim}{\underset{}}} cis - PtCl_{2}(PEt_{3})_{2} + PEt_{3}$$
(1)

is observed in (ii) as in MeOH-CH₂Cl₂-n-hexane or in CHCl₈ solutions [equation (1)] lies well to the l.h.s., i.e. PtCl- $(PEt_3)_3$ +Cl⁻ is thermodynamically more stable than *cis*- $PtCl_2(PEt_3)_2 + PEt_3$,[†] The far-i.r. data in the $\nu(Pt-Cl)$ region (see Table) confirm the formation of PtCl(PEt₃)₃+Clwhen 1 PEt₃ per Pt is added to cis-PtCl₂(PEt₃)₂ in CHCl₃ solution. ¹H N.m.r. and u.v. studies of cis-PtCl₂(PEt₃)₂ + PEt₃ (one per Pt) in CDCl₃ and CH₂Cl₂ solutions respectively give spectra identical to those obtained for solutions of $PtCl(PEt_3)_3^+BF_4^-$. No resonances assignable to free PEt₃ are observed in the ¹H n.m.r. experiment. In contrast, when PPh3 is added to CHCl3 solutions of cis-PtCl2-(PEt₃)₂ far-i.r. (see Table) and ¹H n.m.r. spectra show the major solution species to be cis-PtCl₂(PEt₃)₂ and free PPh₃, *i.e* under these conditions, PPh_3 -containing complexes are thermodynamically less stable than cis-PtCl₂(PEt₃)₂.

 \dagger As found by Haake⁴ and commented on by us, ^{2,3} the use of MeOH as a solvent in (ii) [not present in (i)] stabilizes ionic intermediates and inhibits the *cis-trans*-isomerization probably due in part to the effective solvation of chloride ions by hydroxylic solvents.

Although (iv) above initially may seem incompatible with this statement, this is not so. $cis-PtCl_2(PPh_3)_2$ is only very slightly soluble in $CHCl_3$ and CH_2Cl_2 . However, addition of 3.5 PEt₃ per Pt to a suspension of cis-PtCl₂(PPh₃)₂ in CHCl₃ results in a homogeneous solution. Far-i.r. (see Table) and ¹H n.m.r. studies show the major platinum complex present in solution to be $PtCl(PEt_3)_3+Cl^-$, *i.e.* the equilibrium in [equation (2)] lies well to the r.h.s.

$$cis-PtCl_2(PPh_3)_2 + 3PEt_3 \rightleftharpoons PtCl(PEt_3)_3 + Cl^- + 2PPh_3$$
 (2)

This is further supported by u.v. studies. When excess of PEt₃ is added to either cis-PtCl₂(PEt₃)₂ or cis-PtCl₂-(PPh₃)₂ in CH₂Cl₂, the absorption bands at 323 and 330 nm respectively disappear and in the latter case a strong absorption at ca. 260 nm characteristic of free PPh_a is observed. Addition of MeOH to CH2Cl2 solutions of PtCl- $(PEt_3)_3$ +Cl⁻ + 2PPh₃ [*i.e.* equation (2)] and cooling results in the isolation of crystals of cis-PtCl₂(PPh₃)₂. Isolation of this product can be ascribed to its low solubility and the fact that the equilibrium in equation (2) is a dynamic one, thus resulting in precipitation of the least soluble complex rather than the thermodynamically preferred complex in solution.

- ¹ W. J. Louw, J.C.S. Chem. Comm., 1974, 353.
 ² D. G. Cooper and J. Powell, J. Amer. Chem. Soc., 1973, 95, 1102.
 ³ D. G. Cooper and J. Powell, Canad. J. Chem., 1973, 51, 1634.
 ⁴ P. Haake and R. M. Pfeiffer, J. Amer. Chem. Soc., 1970, 92, 4996, and 5243.
 ⁵ B. Hoake and R. M. Dieffer, Chem. Comm. 1069 (1220).
- ⁵ P. Haake and R. M. Pfeiffer, Chem. Comm., 1969, 1330.

TABLE

Far-i.r. data in the region $370-250 \pm 2 \text{ cm}^{-1}$ for ca. 10^{-2}M CHCl₈ solutions of platinum complexes with and without added phosphines at 32 °C. ν (Pt-Cl) bands are in italics

trans-PtCl ₂ (PEt ₃) ₂	••	• •	367s	<i>338</i> s	261m	
cis-PtCl ₂ (PEt ₃)2 ^a				$314 \mathrm{s}^{\mathrm{a}}$	$285s^{a}$	
$cis + 3PPh_3 per Pt$			367	338w	<i>311</i> s	286s 262m
$cis + 1PEt_a$ per Pt			366s	328vw	<i>300</i> s	263m
[PtCl(PEt _a) ₃]BF ₄	••		367s	330vw	<i>300</i> s	263m
cis-PtCl ₂ (PPh ₃) ₂ ^b				<i>318</i> s	<i>293</i> s	
cis-PtCl ₂ (PPh ₃) ₂ + 3.5PEt ₂ per						
Pt			367s		<i>300</i> s	262m
^а са. 10 ⁻³ м. ^b Nuje	ol mull					

The above data are very similar to results obtained for $PtI_2(PMe_2Ph)_2 + PMe_2Ph^2 PdCl_2(PMe_2 o-tolyl)_2 + PMe_2$ o-tolyl,³ and $PdCl_2(PMe_2 o-tolyl)_2 + PPh_3$.³ We conclude that all currently available data concerning the tertiaryphosphine-catalysed isomerization of MX₂(PR₃)₂ complexes $(M = Pd, Pt; X = halide)^{1-5}$ are fully consistent with the consecutive displacement mechanism.

This work was supported by the National Research Council of Canada.

(Received, 1st July 1974; Com. 785.)