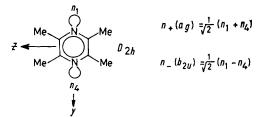
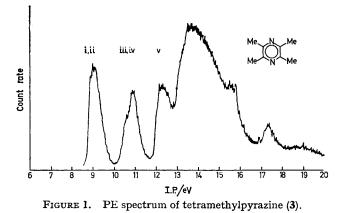
Reversal in the Sequence of the Two Highest Occupied Molecular Orbitals in the Series Pyrazine, 2,6-Dimethylpyrazine, and Tetramethylpyrazine

By PETER BISCHOF and ROLF GLEITER*


(Institut für Organische Chemieder Technischen Hochschule Darmstadt, Germany)

and PETER HOFMANN


(Institut für Organische Chemie der Universitat Erlangen, Germany)

Summary Comparison between the photoelectron spectra of pyrazine (1), 2,6-dimethylpyrazine (2), and tetramethylpyrazine (3) indicates that in (3) the HOMO is $\pi(b_{2g})$ while in (1) and (2) it is n_+ , suggesting a different behaviour towards electrophilic attack on (3) compared with (1) and (2).

REPORTS on reactions between carbenes and nonphenolic six-membered aza-heterocycles are sparse.¹ Ring enlargement to a seven-membered ring has not yet been reported. The reactions known so far indicate that the first step is the attack of the carbene on an N-atom and not on the π system. This can be rationalized by assuming that in the six-membered aza-heterocycles the HOMO is the lone pair or a lone pair combination. Photoelectron (PE) spectroscopic measurements have confirmed this assumption² and also have demonstrated that in methyl substituted pyridines^{2a} the π -orbital is the HOMO. In pyrazine (1) a potential precurser for the synthesis of diazacyclohepta-

triene via carbene attack, the gap between $n_+(a_g)$ and $\pi(b_{2g})$ is 0.55 eV;^{2b} in 2,6-dimethylpyrazine (2) it is reduced to 0.08 eV^{2c} owing to the effect of the methyl groups. If

TABLE

Observed vertical ionization potentials $I_{V,J}$ and calculated orbital energies ϵ_J of tetramethylpyrazine (3). All values are in eV.

Assignment	$I_{V,J}$	$-\epsilon_{\mathbf{J}}$ (calc.)
$b_{2q}(\pi,A)^{\mathbf{a}}$	8.6	7.9
$a_{q}(\sigma, n^{+})$	8-9	8.8
$b_{2u}(\sigma, n-)$	10.40	10.4
$b_{1g}(\pi,S)^{\mathbf{a}}$	10.72	11.2
	$b_{2g}(\pi, A)^{a}$ $a_{g}(\sigma, n^{+})$ $b_{2u}(\sigma, n-)$	$\begin{array}{ccc} b_{2g}(\pi,A)^{\mathbf{a}} & 8.6\\ a_g(\sigma,n^+) & 8.9\\ b_{2u}(\sigma,n^-) & 10.40 \end{array}$

 ^{a}A and S refer to the symmetry behaviour of the orbital with respect to the xy plane.

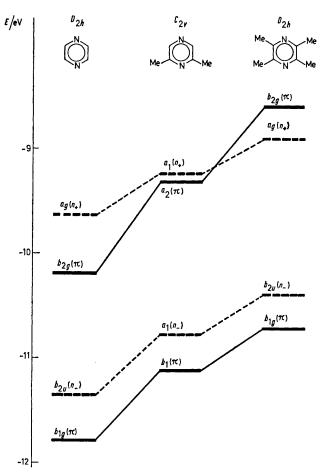


FIGURE 2. Correlation diagram between the measured vertical ionization potentials of pyrazine (1), 2,6-dimethylpyrazine (2), and tetramethylpyrazine (3).

four methyl groups have twice the effect of two, in tetramethylpyrazine (3) the π (b_{2g}) orbital should be above n_+ (a_g) and thus a reaction between (3) and carbene might give the desired ring enlargement. We have therefore measured the PE-spectrum of tetramethylpyrazine³ (Figure 1 and Table.[†]) In Figure 2 the PE data of (1), (2), and (3) are correlated using Koopmans' theorem.⁴ In Figure 1 there are two peaks below 12 eV which we show later are due to two ionization processes (bands i-iv in Figure 1).

Our assignment (see Table) of bands (i) and (ii) is based on the band shape, perturbation theory,⁵ and semiempirical calculations.⁶ While in (2) the onset of the first band is of roughly similar appearance to that in (1), in (3), however, the onset of the first band shows a steep ascent as does band (ii) in (1).8 This supports perturbation arguments which predict 8.5 eV for $\pi(\hat{b}_{2g})$ and 8.8 eV for n_+ (a_g) . The additivity of the effect of the methyl groups which is observed in alkenes,⁹,^{2a} alkynes,¹⁰ and conjugated systems^{2a} is fully supported by extended Hückel calculations.[‡] The results are summarized in the Table.

With regard to the split of π and n_+ , we assume that the superposition of an intense (e.g. $2 \leftarrow 0$) transition of the π -band and an intense transition of the n_+ band (e.g. $3 \leftarrow 0$) coincide in the peak at 8.81 eV. This leads us to take 8.6 as the vertical ionization potential $(I_{v,J})$ for π (b_{2g}) and 8.9 eV that for the $n_{+}(a_{q})$ band. Bands (iii) and (iv) we assign by analogy with (1) and (2) to the symmetry-adapted linear combination $n_{-}(b_{2u})$ and to the $\pi(b_{1g})$ orbital. This interpretation is in accord with arguments from perturbation theory and EH-calculations[‡] which predict that both orbitals $(b_{2u} \text{ and } b_{1g})$ should be shifted almost by the same amount.

We thank Dr. J. Spanget-Larsen (Aarhus) for providing us with his MIEHM calculations. Financial support of the Fonds der Chemischen Industrie is acknowledged.

(Received, 29th May 1974; Com. 615.)

† PE-spectra have been recorded on a Perkin-Elmer PS 18 photoelectron spectrometer.

‡ According to our experience the extended Hückel method with parameters proposed by Hoffmann⁶ underestimates the inductive effect of methyl groups. Therefore Spanget-Larsens' modified iterative extended Hückel method (MIEHM) was applied, which reproduces the PE-spectra of azabenzenes,⁷a azanaphthalenes,⁷b and their alkylderivatives⁷c very well.

¹ R. Daniels and O. Le Roy Salerni, Proc. Chem. Soc., 1960, 286; J. Ploquin, Bull. Soc. chim. France, 1947, 901.
² (a) E. Heilbronner, V. Hornung, F. H. Pinkerton, and S. F. Thames, Helv. Chim. Acta, 1972, 55, 289; (b) R. Gleiter, E. Heilbronner, and V. Hornung, *ibid.*, p. 255; (c) E. Haselbach, Z. Lanyiova, and M. Rossi, *ibid.*, 1973, 56, 299.
⁸ O. Wallach, Chem. Zentralblatt, 1928, I, 2177. Anhydrous (3) can easily be purified by sublimation.
⁴ T. Koopmans, Physica, 1934, 1, 104; W. G. Richards, Internat. J. Mass. Spectrometry Ion Physics, 1969, 2, 419.
⁵ E. Heilbronner and H. Bock, 'Das HMO-Modell und seine Anwendung,' Verlag Chemie, Weinheim, Bergstrasse, 1968; M. J. S. Dewar, 'The Molecular Orbital Theory of Organic Chemistry,' McGraw-Hill, New York 1971.
⁶ R. Hoffmann, J. Chem. Phys., 1963, 39, 1397; R. Hoffmann, and W. N. Lipscomb, *ibid.*, 1962, 36, 2179, 3489; 1962, 37, 3872.
⁷(a) J. Spanget-Larsen, J. Electron Spectroscopy, 1973, 2, 33; (b) *ibid.*, 1974, 3, 369; (c) unpublished results.
⁸ K. A. Muszkat and J. Schäublin, Chem. Phys. Letters, 1972, 13, 301.
⁹ P. Masclet, D. Grosjean, G. Mourier, and J. Dubois, J. Electron Spectroscopy, 1973, 2, 225.

- ¹⁰ W. Ensslin, H. Bock, and G. Becker, J. Amer. Chem. Soc., 1974, 96, 2757.