New Metabolites of Aspergillus amstelodami Related to the Biogenesis of Neoechinulin

By ARNALDO DOSSENA, ROSANGELA MARCHELLI,* and ANDREA POCHINI (Istituto di Chimica Organica, Università, 43100 Parma, Italy)

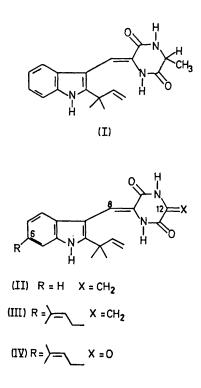
Summary The mycelium of Aspergillus amstelodami has been found to contain three new prenylated indole metabolites, neoechinulin A (I), neoechinulin B (II), and neoechinulin C (III), which are relevant for the biogenesis of neoechinulin (IV). of metabolites involved in echinulin¹-neoechinulin² biosynthesis in sugar beet molasses cultures of *Aspergillus amstelodami*, three new prenyl indole derivatives were isolated from the ether extracts of the mycelium and characterised:neoechinulin A (I), B (II), and C (III). We report here on their structures.

The structures of neoechinulin A (I), ivory crystals m.p.

In the course of a study on the time-dependent elaboration

264—265°, B (II), yellow crystals, m.p. 234—236°, and C (III)† yellow crystals, m.p. 205—207°, were confirmed by their u.v., n.m.r. and mass spectra. The essential differences in the n.m.r. spectra between (I) and (II) consisted of the absence of a -CHMe doublet at δ 1.42 and the appearance of : CH₂ at δ 4.78, 5.09 for (II), and between (II) and (III) the main difference consisted of the additional resonances for the Me₂C=CCH₂- group for (III). Structures (I)—(III) were further confirmed by comparison with echinulin¹ and neoechinulin.² Conclusive evidence for structure (III) was provided by chemical degradation. Alkaline hydrolysis of (III) afforded 2- α , α -dimethylallyl-6- γ , γ -dimethylallylindole and the corresponding 3-formylindole as already observed in the hydrolysis of neoechinulin.²

The structures of neoechinulin A,B, and C (I—III) are particularly interesting in view of a possible biogenetic relationship with neoechinulin (IV): (I) \rightarrow (II) \rightarrow (III) \rightarrow (IV), outlining a completely new oxidation mechanism (CH-Me \rightarrow C=O via a C=CH₂ group). The incorporation (1·2%) of cyclo-L-alanyl-L-tryptophyl (methylene-C¹⁴) in neoechinulin seems to corroborate such a hypothesis.


Furthermore, the isolation of (I) adds more evidence to that proposed by Allen³ for echinulin, i.e. that the first isopentenyl chain is introduced at the 2-position of a preformed *cyclo*-alanyltryptophyl system.

We thank Prof. G. Casnati for helpful discussions and Dr. E. Dradi for the n.m.r. determinations. This work was supported in part by a grant from C.N.R.

(Received, 5th July 1974; Com. 812.)

† While this paper was being prepared, we were informed by Profs. C. Fuganti and D. Ghiringhelli of their discovery of this compound

- ¹ A. Quilico, Res. Progr. Org. Biol. Medicin. Chem., 1964, 1, 1964.
- ² G. Casnati, A. Pochini, and R. Ungaro, Gazzetta, 1973, 103, 141.
- ⁸ C. M. Allen, Jr., Biochemistry, 1972, 11, 2154.

