Base Hydrolyses of Penta-ammineruthenium(III) Complexes of Organonitriles

By ANDREW W. ZANELLA, and PETER C. FORD*

(Department of Chemistry, University of California, Santa Barbara, Catifornia 93106)

Summary Base hydrolysis of the $\operatorname{Ru}(\operatorname{NH}_{8})_{5}^{3+}$ complex of acetonitrile to the corresponding complex of the acetamide anion occurs with a rate *ca*. 10⁸ as fast as the free

ligand, ca. 10⁶ as fast as the analogous Ru^{II} complex, and more than 10² faster than the Rh^{III} analogue.

CO-ORDINATION to cationic metal centres such as Co(NH₃)₅³⁺ markedly enhances rates of base hydrolysis (1) of organonitriles to the corresponding co-ordinated amides:^{1,2} however, reaction rates for other non-labile complexes have

$$(\mathrm{NH}_3)_5\mathrm{M}-\mathrm{N}=\mathrm{C}-\mathrm{R}^{n+}+\mathrm{OH}^-\rightarrow(\mathrm{NH}_3)_5\mathrm{M}\mathrm{NH}-\mathrm{C}-\mathrm{R}^{(n-1)+}$$
(1)

not previously been reported. We have found that coordination to Rum results in a substantially greater rate enhancement. Moreover, homologous Rum, Rhm, and Ru^{II} complexes show dramatic differences in the rate of hydrolysis which can be directly attributed to the metal ion electronic configurations and related metal-ligand interactions.

Reaction of the benzonitrile and acetonitrile complexes of $Ru(NH_3)_{5}^{3+}$ in weakly basic solution results in the corresponding benzamido and acetamido-complexes which have been characterized by their spectral and acid-base properties. Similarly, the Rh^{III} complex Rh(NH₃)₅(Me- $CN)^{3+}$ hydrolyses in dilute NaOH solution to give $Rh(NH_3)_5$ (MeCONH)²⁺. Both acetamido-complexes have been isolated as the perchlorate salts and demonstrated to be identical to authentic complexes prepared by independent routes from acetamide and the aquopenta-ammine complexes by established procedures.^{3,4} The authentic complexes were characterized by elemental analyses and spectral properties.

The Rh^{III} complex Rh(NH₃)₅MeCN³⁺ hydrolyses in dilute aqueous NaOH according to the second-order rate law $\{v = k_{0H} [Rh(NH_3)_5(MeCN)^{3+}][OH^-]\}$ with $k_{0H} = 1.0 \pm$ $0.1 \text{ l mol}^{-1} \text{ s}^{-1}$ (25°; $\mu \text{ l} \cdot 0 \text{m NaClO}_4$). The Ru^{III} analogues were sufficiently more reactive that HCO₃-CO₃²⁻ buffer solutions (pH 8-9) were used in order to follow the reactions by conventional spectral techniques. The reaction rate is a function of hydroxide and buffer concentrations, but extrapolation of observed rates to zero buffer concentration at different pH's allowed evaluation of k_{OH} . This was $2\cdot 2 \times 10^2$ l mol⁻¹ s⁻¹ for the acetonitrile complex and $2\cdot 0 \times 10^{-1}$ $10^3 \ l \ mol^{-1} \ s^{-1}$ for the benzonitrile complex, in both cases reactivity enhancements of more than 10⁸ over the hydrolysis rates for the free ligands.^{1,2} In contrast the Ru^{II} complex $Ru(NH_3)_5(MeCN)^{2+}$ is remarkably unreactive displaying only slow decomposition over a period of days in deaerated 0.1M aqueous NaOH. An upper limit of $6 \times$ 10^{-5} l mol⁻¹ s⁻¹ can be assigned to k_{0H} under these conditions, an enhancement at most by a factor of 38 over the free ligand value (1.6 \times 10⁻⁶ l mol⁻¹ s⁻¹ at 25°).²

The reactivity of the 4d⁶ complex Rh(NH₃)₅(MeCN)³⁺ toward hydrolysis is quite close to that of the homologous $3d^{6}$ Co^{III} ion Co(NH₃)₅(MeCN)³⁺ ($k_{OH} = 3.4$ l mol⁻¹ s⁻¹ at 25°)² under similar conditions. The much greater reactivity of the closely analogous 4d⁵ Ru^{III} complex must be attributed to the relative ability of Rum to act as a π acceptor,⁵ thus stabilizing the developing negative charge resulting from rate-determining hydroxide attack on the nitrile unit. Given that other 2+ metal ions have been shown to be effective in catalytic hydrolysis of organonitriles,⁶ the remarkable unreactivity of the $4d^6$ Ru^{II} complex may reflect a kinetic effect of the demonstrated ability of the Ru(NH₃)₅²⁺ unit's ability for π -backbonding into the nitrile ligand.3,7

(Received, 15th July 1974; Com. 858.)

¹ D. Pinnell, G. B. Wright, and R. B. Jordan, J. Amer. Chem. Soc., 1972, 94, 6104; R. Balahura, P. Cock, and W. L. Purcell, ibid., 1974, 96, 2739.

² D. A. Buckingham, F. R. Keene, and A. M. Sargeson, J. Amer. Chem. Soc., 1973, 95, 5649.
³ R. E. Clarke and P. C. Ford, Inorg. Chem., 1970, 9, 227.
⁴ R. D. Foust and P. C. Ford, Inorg. Chem., 1972, 11, 899.

- ⁵ P. C. Ford, *Inorg. Chem.*, 1971, **10**, 2153. ⁶ R. Breslow, R. Fairweather, and J. Keana, *J. Amer. Chem. Soc.*, 1967, **89**, 2135.

⁷ R. D. Foust and P. C. Ford, J. Amer. Chem. Soc., 1972, 94, 5686.