Unusual Emission Behaviour of Some Chromium(III) Complexes

By N. A. P. KANE-MAGUIRE and J. CONWAY

(Department of Chemistry, Furman University, Greenville, South Carolina 29613)

and C. H. LANGFORD*

(Department of Chemistry, Carleton University, Ottawa, Canada K1S 5B6)

Summary Two phosphorescence bands in room temperature emission in aqueous solutions of $Cr(phen)_3^{3+}$ and $Cr(bipy)_3^{3+}$ are assigned origins from 2E and 2T states, the second being a "delayed phosphorescence"; a novel broad band emission from $Cr(bipy)_3^{3+}$ in Me₂SO is assigned as the first example of quartet fluorescence of a Cr^{III} complex in solution.

THE luminescence behaviour of transition-metal complexes has been the subject of numerous investigations in recent years.^{1,2} For Cr^{III} complexes such studies have been largely confined to microcrystalline samples and glassy solutions. However, recent work on room temperature fluid phosphorescence³⁻⁸ has been applied with considerable success to the task of distinguishing between quartet and doublet states as precursors to a photochemical reaction.⁶⁻⁹

In the course of a photochemical study of the cationic complexes $Cr(phen)_3^{3+}$ and $Cr(bipy)_3^{3+}$ (phen = 1,10-phenanthroline; bipy = 2,2'-bipyridine) we observed that emission originated from several discrete electronic excited states, the composite spectrum being sensitive to temperature and especially solvent. We report here spectra in aqueous and Me₂SO solution recorded either on an Aminco-Bowman SPF equipped with an RCA 446S phototube, or using "Raman" instrumentation based on an argon ion laser.¹⁰

A significant feature of the room temperature phosphorescence spectra of these two complexes in aqueous solution is the presence of a band to the high-energy side of the principal emission peak. The intense band is assigned as the ${}^{2}E \rightarrow {}^{4}A_{2}$ 0-0 transition, in agreement with the corresponding absorption spectra (Table). The high energy band is too intense to be attributed to radiative decay from a higher vibrational level of ${}^{2}E$. We also discount impurity or photoproduct emission, since the relative band areas remain unchanged with sample recrystallization, passage through an anion exchange resin (Cl-), and irradiation time. Free phen and bipy, and the ultimate complex products cis-Cr(phen)₂(H₂O)₂³⁺ and cis-Cr(bipy)₂(H₂O)₂³⁺ are non-emitters in this region. Moreover, trace amounts of the anions I⁻, SCN⁻, N₃⁻, Fe(CN)₆⁴⁻, and $Fe(CN)_{a^{3-}}$ (which are efficient, selective doublet quenchers) quench both emission signals. We suggest the highenergy component originates from the higher electronic level ${}^{2}T_{1}$ (*i.e.* ${}^{2}T_{1} \rightarrow {}^{4}A_{2}$ 0-0 transition). This conclusion again draws support from the absorption spectra (Table) The small Stokes shift observed in emission is consonant with the small Jahn-Teller distortion predicted for the $^{2}T_{1}$ state. Also, the energy gap $^{2}E^{-2}T_{1}$ (690 cm⁻¹ and 620 cm^{-1} for the bipy and phen cases respectively) is in the range observed in other CrIII complexes. 11,12

That the ${}^{2}T_{1}$ band becomes more prominent with rising temperature is consistent with upper-level population via a Boltzmann type pseudo-equilibrium process and delayed phosphorescence.¹³ Examination of the room-temperature solution phosphorescence of $Cr(en)_{3}^{3+}$ (en = ethylenediamine) also reveals a weak signal at ca. 650 nm relative to the strong ${}^{2}E \rightarrow {}^{4}A_{2}$ 0-0 transition at 672 nm.¹⁴ This highenergy peak is again attributable to emission from the ${}^{2}T_{1}$ state.¹⁵ Although the ${}^{2}E^{-2}T_{1}$ energy gap is comparable to that in the $Cr(phen)_3^{3+}$ and $Cr(bipy)_3^{3+}$ systems, the two states now appear not to be in Boltzmann equilibrium. A possible rationalization lies in a much shorter lived ²E doublet for $Cr(en)_3^{3+}$ (in aqueous solution at 28°C, $\tau = 5 \times 10^{-7} \, \mathrm{s}$).¹⁶

We note that emission intensity estimates of the relative ${}^{2}T_{1}$ and ${}^{2}E$ state populations in the phen and bipy cases suggest an upper-state population in substantial excess of Boltzmann predictions. For example, the relative ${}^{2}T_{1}/{}^{2}E$ population for Cr(phen)₃³⁺ at 25° C is 21% (from spectra) and 5% (Boltzmann). The discrepancy may result from the assumption of equivalent phosphorescence quantum yields from the two levels. A knowledge of the respective radiative rate constants, k, is important in this regard, and estimates based on absorption band oscillator strengths indicate k $({}^{2}T_{1}) = ca. 3.3 k ({}^{2}E)$. Additional

- ¹ P. D. Fleischauer and P. Fleischauer, Chem. Rev., 1970, 70, 199.

- ¹ P. D. Fleischauer and P. Fleischauer, Chem. ICO., 1910, 70, 199.
 ² F. E. Lytle, Appl. Spectroscopy, 1970, 24, 319.
 ³ N. A. P. Kane-Maguire, and C. H. Langford, Chem. Comm., 1971, 895.
 ⁴ T. V. Long, II and D. J. B. Penrose, J. Amer. Chem. Soc., 1971, 93, 632.
 ⁶ V. Balzani, R. Ballardini, M. T. Gandolfi, and L. Moggi, J. Amer. Chem. Soc., 1971, 93, 339.
 ⁶ C. H. Langford and L. Tipping, Canad. J. Chem., 1972, 50, 887.
 ⁷ N. A. P. Kane-Maguire and C. H. Langford, J. Amer. Chem. Soc., 1972, 94, 2125.
 ⁸ N. Sabbatini, M. A. Scandola, and V. Carasiti, J. Phys. Chem., 1973, 77, 1307.
 ⁹ R. Ballardini, G. Varani, H. F. Wasgestian, L. Moggi, and V. Balzani, J. Phys. Chem., 1973, 77, 2947.
 ¹⁰ T A Komingstein Appl. Spectroscopy. 1968. 22, 438.

C

- J. A. Koningstein, Appl. Spectroscopy, 1968, 22, 438.
 L. S. Forster, Transition Metal Chem., 1969, 5, 1.
- ¹² A. D. Liehr, J. Phys. Chem., 1963, 67, 1314.
- ¹³ M. Kasha, Discuss. Faraday Soc., 1950, 9, 14.
 ¹⁴ S. L. Barker, Chem. Comm., 1971, 363.
- ¹⁵ P. J. McCarthy and M. T. Vala, Proc. XIV ICCC, Toronto, 1972, p. 330.
- 16 H. F. Wasgestian, R. Ballardini, G. Varani, L. Moggi, and V. Balzani, J. Phys. Chem., 1973, 77, 2614.
- ¹⁷ P. D. Fleischauer, A. W. Adamson, and G. Sartori, Progr. Inorg. Chem., 1972, 17, 1.

evidence against direct ${}^{2}T_{1}$ emission is the observed absence of the high-energy component at 77 K. Further, similar lifetimes are indicated for the two states, from analysis of data on emission quenching by various added anions.

Addition of Me₂SO to aqueous solutions of Cr(phen)₃³⁺ and Cr(bipy)₃³⁺ results in a marked reduction in phosphorescence intensity. Several lines of evidence suggest this results from suppression of ${}^{4}T_{2} \rightarrow {}^{2}E$ intersystem crossing (ISC) rather than direct ${}^{2}E$ doublet quenching: (1) Evidence was presented earlier⁷ implicating the ${}^{4}T_{2}$ excited state as the reactive level during the photoracemisation of $(+)_{589}$ -Cr(phen)₃³⁺. Addition of Me₂SO accelerates photoracemisation. (2) The phosphorescence intensity of Cr(bipy)₃³⁺ in water and Me₂SO have similar temperature dependencies.³ A lower activation energy would be anticipated⁷ for Me₂SO if an essentially temperature-independent doublet-quenching mechanism were operative. (3) In the case of $Cr(bipy)_{3^{3+}}$, phosphorescence quenching is accompanied by the appearance of a broad structureless emission band centered near 580 nm. We assign this new band to ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ fluorescence, based on its spectral width and Stokes shift from the ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ absorption maximum (ca. 440 nm). Free-ligand emission was eliminated since the intensity was not irradiation time dependent. (4) CsI addition to a Me₂SO-Cr(bipy)₃³⁺ solution quenches the weak phosphorescence signal, but not the broad emission. In view of the doublet quenching eapabilities of I-,7 Me₂SO accelerated back ISC $({}^{2}E \rightarrow {}^{4}T_{2})$ is considered unlikely.

TABLE. Absorption and emission maxima of Cr(phen)_sCl₃ and Cr(bipy)_sCl_s in water at 25 °C.

	Ab	sorption ${}^{4}A_{2} \rightarrow {}^{3}E$		Emission ${}^{2}E \rightarrow {}^{4}A_{3}$	(10^{3} cm^{-1}) ${}^{2}T_{1} \rightarrow {}^{4}A_{3}$	$^{2}T_{1}-^{2}E_{/\mathrm{cm}^{-1}}$
r(phen) ₃ ³⁻ r(bipy) ₃ ³⁺	+ -	13·76 13·76	$14.47 \\ 14.51$	13·76 13·76	$14.29 \\ 14.39$	620 690

If our assignment of ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ fluorescence in the Cr (bipy)³⁺-Me₂SO system is correct, this would appear to be the first reported case of room temperature solution fluorescence from a CrIII complex. This has important ramifications regarding solution photochemistry studies. A knowledge of excited-state distortions (as provided by emission data) is vital to any detailed analysis of photochemical behaviour. This is particularly true of the ${}^{4}T_{2}$ excited state, since a compelling body of evidence points to the level being solely responsible for photoreactivity in CrIII systems.⁶⁻⁹ We note that the fluorescence position is consistent with a correlation between absorption and fluorescence wavelengths for oxygen-ligand-CrIII complexes at low temperature which has been noted.¹⁷

(Received, 4th July 1974; Com. 801.)