The Interaction of Platinum^{II} Chloride with a Carbon–Carbon σ -Bond

By IAN J. HARVIE and FRANCIS J. McQuillin*

(Department of Organic Chemistry, University of Newcastle upon Tyne NE1 7RU)

Summary In ¹H-²H exchange catalysed by Pt^{II}, cyclobutane shows a remarkably large multiple exchange factor, attributed to interaction between Pt^{II} and the C-C bond; tetraphenylcyclobutane is cleaved by Pt^{II} to give *trans*-stilbene while norbornane shows preferential *exo* exchange.

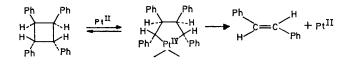
X-RAY data indicate a bonding interaction between the metal and a spatially proximate CH bond in PdBr(PPh₃)₂-(CR:CR:CHR), R = CO₂Me,¹ and in molybdenum complexes² of the type [Et₂B(pz)₂]Mo(CO)₂(η^3 -allyl). Related chemical evidence has also been summarised.² Particularly significant³ is the observed ¹H-²H exchange in alkanes catalysed by PtCl₂ in AcOD-D₂O-DClO₄. A survey of the rates of ¹H-²H exchange of cycloalkanes CH₂[CH₂], n = 3-7, under these conditions has now yielded data pointing to a bonding interaction between Pt^{II} and the carbon-carbon bond.

The Table gives values of k_{\emptyset} , the initial total rate of ²H incorporation, k_{b} , the rate of removal of ²H₀-cycloalkane, and the multiple exchange factor, $M = k_{\emptyset}/k_{b}$, after reaction of the cycloalkanes at 100 °C for 4 h.

We note satisfactory numerical agreement with previously recorded³ data for cyclopentane and cyclohexane, but also that cyclobutane shows a remarkably large k_{\emptyset} value and a correspondingly large value of M.

TABLE

Rate of ¹H-²H exchange⁸ for CH₂[CH₂]_n


			• •			
n		3	4	5	6	7
%2H	• •	$32 \cdot 2$	10.8	10· 3	$5 \cdot 0$	3.7
$\dot{k}_{\rm b}$ h ⁻¹		$22 \cdot 3$	17.9	$22 \cdot 8$	12.9	10.8
<i>k</i> ø h−1		79 ·6	28.7	$32 \cdot 8$	17.9	15.2
м		3.6	1.6	1.4	1.4	1.4
I.P.b		10.7	10.5	9.9	10.3	10.0

 $^{\rm a}$ Cycloalkane, 3 mM, K₂PtCl₄, 0.2 mM, DClO₄, 2 mM, pyrene 0.5 mM in AcOD and D₂O (1:1), 10 ml, at 100 °C for 4 h. $^{\rm b}$ Ionisation potential (eV), cf. ref. 4.

This behaviour of cyclobutane proved reproducible in duplicate experiments, and in absence of Pt^{II} salt, cyclobutane in the ²H-medium at 100° showed no ¹H-²H exchange.

The multiple exchange factor, M, is reasonably attributed³ to a Pt^{II}-alkane or -cycloalkane association with formation of a complex within which repeated activation and exchange of CH bonds may occur. In comparison with the higher cycloalkanes, cyclobutane is characterised by CH bonds of higher *s*-, and C-C bonds of higher *p*-character. Comparison of cyclobutane with cyclohexane shows no correlation between k_b and the CH bond *s*-character, but we suggest a correlation between the cyclobutane M value and the *p*-character of the C-C bonds which in energy terms will be raised nearer to the available levels of Pt^{II}. We note indeed that cyclopropanes with Pt^{II} undergo insertion into a C-C bond.⁵

The conditions of the exchange reaction did not allow us to observe whether a similar insertion of Pt^{II} may occur with cyclobutane, but we reasoned that under these conditions *cis,anti,cis*-tetraphenylcyclobutane⁶ might exhibit catalysed fragmentation:

Tetraphenylcyclobutane (0.6 mM) with K₂PtCl₄ (0.2 mM), DClO₄ (2 mM), and benzene (stabiliser) (0.5 mM) in AcOH-H₂O (1:1, 10 ml) at 160° for 260 h yielded a product from which *trans*-stilbene (0.1 mM), m.p. 123—124°, λ_{max} 294, 307 nm, *m/e* 180, could be isolated by t.l.c. From similar treatment in absence of K₂PtCl₄ tetraphenylcyclobutane was recovered unchanged.

These results offer physical and chemical evidence of interaction of Pt^{II} with the cyclobutane C-C bond. We were, however, interested to obtain some independent assessment of the importance of angle strain in the exchange reaction. Norbornane, which has ring angles? of 96° at position 7 and 104° at position 2 was therefore subjected to the exchange reaction at 100° for 65 h. This gave a ²H-norbornane (18.9% ²H) showing n.m.r. signals at τ 7.80, 8.87 and 8.57 of intensity 1:3: ~ 1. This indicates considerable preferential exchange of *exo*-hydrogens, and lack

of exchange at the more angularly strained 7-position.8 Angle strain per se does not therefore appear to account for the behaviour of cyclobutane.

For the cycloalkanes there is no evident correlation between rate of ¹H-²H exchange and ionisation potential (cf. Table), as has been claimed³ for n-alkanes.⁹ For the cycloalkanes the angular relation of adjacent CH bonds does not appear to be an important factor (cf. cyclo-butane, -pentane and -hexane), but the relatively cisoid carbon skeleton may correlate with their relatively higher rate of exchange in comparison with corresponding n-alkanes.³ The difference is found in k_b and is presumably steric in origin.

(Received, 3rd July 1974; Com. 797.)

¹ D. M. Roe, P. M. Bailey, K. Moseley and P. M. Maitlis, J.C.S. Chem. Comm., 1972, 1273. ² F. A. Cotton, T. La Cour, and A. G. Stanislowski, J. Amer. Chem. Soc., 1974, 96, 754; F. A. Cotton and V. W. Day, J.C.S. Chem.

Comm., 1974, 415. ³ R. J. Hodges, D. W. Webster, and P. B. Wells, *J. Chem. Soc.* (A), 1971, 3230. ⁴ E. Heilbronner, Angew. Chem. Internat. Edn., 1970, 9, 953; M. J. S. Dewar and S. D. Warley, *J. Chem. Phys.*, 1969, 50, 654; D. W. Turner, Adv. Phys. Org. Chem., 1966, 4, 31; M. Al-Taboury and D. W. Turner, *J. Chem. Soc.*, 1964, 4434; J. C. Lorguet, Mol. Phys., 1965, 9, 101.

⁶ F. J. McQuillin and K. G. Powell, J.C.S. Dalton, 1972, 2123 and refs. therein.
⁶ F. J. McQuillin and K. G. Powell, J.C.S. Dalton, 1972, 2123 and refs. therein.
⁶ W. Baker, J. W. Hilpern, and J. F. W. McOmie, J. Chem. Soc., 1961, 479.
⁷ J. F. Ching, C. F. Wilcox, and S. H. Bauer, J. Amer. Chem. Soc., 1968, 90, 3149.
⁸ Cf. E. McMahon and J. K. A. Clark, Tetrahedron Letters, 1971, 1413.
⁹ Cf. G. W. Littlecott and F. J. McQuillin, Tetrahedron Letters, 1973, 5013.