¹³C Nuclear Magnetic Resonance Spectra of *NN*-Dimethylformamide in Aqueous Acid Solution. Evidence for Predominant O-Protonation at all Acidities

By ROBERT A. McClelland and William F. Reynolds*

(Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1)

Summary The observation of a doublet methyl signal in the ¹³C n.m.r. spectrum of NN-dimethylformamide from 0-100% H₂SO₄ demonstrates that the predominant protonated form at all acidities is the *O*-protonated amide.

ALTHOUGH there is general agreement that amides are oxygen-protonated in strongly acidic solutions^{1,2} a controversy has arisen over the predominant protonation site in dilute and moderately concentrated aqueous acids.²⁻⁴ The primary basis of this controversy lies in the ¹H n.m.r. spectra of amides in these solutions, which give an ambiguous answer for the structure of the protonated species. For example, although the N-Me protons of NN-dimethylamides appear as two distinct resonances in very dilute acids and in very concentrated acids, these signals coalesce in the region of intermediate acidity.⁵ This has been explained in terms of predominant N-protonation,^{2,5} or alternatively in terms of predominant O-protonation, with a minor amount of the N-protonated amide being responsible for the isomerisation.⁴

We report that in the ¹³C n.m.r. spectra of NN-dimethylformamide in aqueous sulphuric acids, such coalescence does not occur. ¹³C Chemical shifts as well as representative N-methyl spectra are shown in the Figure. Although there are changes in the position of the peaks associated with protonation and medium effects, *at all acidities* there are two distinct signals associated with the two methyl groups.

The non-equivalence of the methyl signals is clearly inconsistent with appreciable N-protonation at any acidity since this should lead to coalescence of the methyl peaks to a singlet. However, it is entirely consistent with a steady progression from neutral to O-protonated dimethylformamide with increasing acidity.

Slight additional broadening of the methyl signals is noted in the region of intermediate acidity which can be attributed

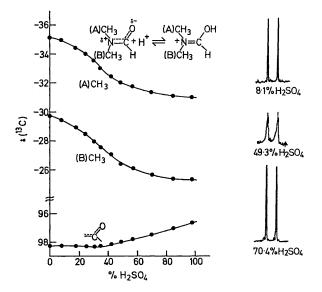


FIGURE. Plots of ¹³C chemical shifts for NN-dimethylformamide v. concentration of H₂SO₄. (Chemical shifts relative to external dioxan in D₂O with low-field shifts positive. Methyl assignment is that given by W. McFarlane, *Chem. Comm.*, 1970, 418). Proton-decoupled ¹³C spectra obtained on a Varian CFT-20 at 20 MHz, using 15 vol.% solutions. Representative spectra of N-methyl groups on the right.

to isomerization via N-protonation. However, the maximum broadening of 10 Hz (at $45\% \text{ H}_2\text{SO}_4$) corresponds to a rate of isomerization of only 3×10^{11} mol⁻¹ s⁻¹ ($\pi \Delta \nu$, where $\Delta v =$ line width at half height). Since the reverse (deprotonation) reaction should be very rapid, perhaps even diffusion-controlled (k ca. 10^{10}),^{4,6} the slow rate of isomerization requires an extremely small fraction of the N-protonated species, even though the amide is substantially protonated in 45% H₂SO₄ (ca. 85%).⁵ Because of the smaller methyl chemical shift difference in the ¹H spectrum (ca. 8 Hz at 60 MHz)⁵ than the 13 C spectrum (ca. 110 Hz at 20 MHz), this rate of isomerization is sufficient to coalesce the ¹H methyl signals while the ¹³C spectrum shows

Variations in chemical shifts with acidity are less informative than the spectral pattern, because of pronounced medium effects on the protonated amide. However, there is a low-field shift of the methyl signals on protonation. This suggests O-protonation since N-protonation generally causes high field shifts of α -carbon atoms.⁷

(Received, 5th August 1974; Com. 993.)

¹ R. B. Homer and C. D. Johnson, 'The Chemistry of Amides,' ed., J. Zabicky, Interscience, New York, 1970, p. 187.

- ² M. Liler, J.C.S. Perkin II, 1974, 71, and refs. therein. ³ H. Benderly and K. Rosenheck, J.C.S. Chem. Comm., 1972, 179; C. R. Smith and K. Yates, Canad. J. Chem., 1972, 50, 771.

⁴ R. B. Martin, J.C.S. Chem. Comm., 1972, 793; R. B. Martin and W. C. Hutton, J. Amer. Chem. Soc., 1973, 94, 4752.

- ⁵ M. Liler, J. Chem. Soc. (B), 1969, 385; 1971, 334.
- ⁶ M. Eigen, Angew. Chem. Internat. Edn., 1964, 3, 1.

⁷ R. J. Pugnire and D. M. Grant, J. Amer. Chem. Soc., 1968, 90, 687, 4232; G. C. Levy and G. L. Nelson, '¹³C N.M.R. for Organic Chemists,' Wiley-Interscience, New York, 1972, pp. 52, 90, 140; A. R. Quirt, J. R. Lyerla, I. R. Peat, J. S. Cohen, W. F. Reynolds, and M. H. Freedman, J. Amer. Chem. Soc., 1974, 96, 570.