Dichlorocarbene Addition to 1-Methoxybiphenylene. Formation of a Benzo[3,4]cyclobuta[1,2-c]tropone Derivative

By MASARU SATO, SEIJI EBINE,* and JOSUKE TSUNETSUGU (Department of Chemistry, Saitama University, Urawa, Saitama 338, Japan)

Summary 1-Methoxybiphenylene (1) reacts with dichlorocarbene to give 1-chlorobenzo[3,4]cyclobuta-[1,2-c]tropone (2) and two fluorenone derivatives (3)and (4).

The compounds derived from fusion of the $4n\pi$ -electron cyclobutadiene ring to $(4n + 2)\pi$ -electron non-benzenoid aromatic systems are of considerable interest with regard to aromatic character.^{1,2} We now report the preparation and properties of the benzocyclobutatropone derivative (2). Reaction of 1-methoxybiphenylene (1) with dichlaro-

Reaction of 1-methoxybiphenylene (1) with dichlorocarbene (3 mol. equiv.), generated by action of alkali on CHCl₃ in the presence of trimethyloctylammonium chloride, at room temperature for 2 h and chromatographic separation of the products afforded the chloro-compound (2) as pale yellow needles, m.p. 172-173°, in 1.7% yield with 55-65% recovery of the starting biphenylene. Elemental analyses and spectral properties are in agreement with the assigned structure; m/e 214 (M^+) and 186 (100%) (M^+ – CO); δ (CDCl₃; 100 MHz) 6·31 (1H, dd, $J_{4,5}$ 6·9, $J_{3,5}$ 1·4 Hz, 5-H), 6·51 (1H, dd, $J_{3,4}$ 12·6 Hz, 3-H), 6·72 (1H, dd, 4-H), and 7.1-7.5 (4H, m, benzenoid); vmax (KBr) 1613 and 1603 cm⁻¹ (CO and C = C); λ_{max} (EtOH) 294 nm (ϵ 47,000). The fusion of the cyclobutadiene ring with the tropone ring should result in π -electron localization in both rings, and the n.m.r. spectrum should provide information about the character of both the four- and seven-membered rings. The benzene ring protons move a little to higher field, in constrast to the case of biphenylene³ and thianorbiphenylene¹ whose benzenoid protons show a large upfield shift. This may be accounted for if the four-membered ring is in the tetramethylenecyclobutane (or dimethylenecyclobutene) form and hence has little paramagnetic ring current effect arising from the cyclobutadiene structure. The upfield shift of the seven-membered ring protons in (2), compared with tropone ring protons (δ 7.0),⁴ may be due to increased π -electron localization of the tropone ring rather than a paramagnetic ring current effect of the four-

SCHEME

membered ring. $J_{4,5}$ in (2) is significantly smaller than $J_{\mathbf{3},\mathbf{4}}$ (8.3 Hz)⁵ in tropone itself, suggesting that the sevenmembered ring in (2) has some distortion from planarity.

1-Methoxyfluorenone $(3)^6$ (0.8%) and 2-chlorofluorenone

 $(4)^7$ (1.3%) were also isolated from the reaction mixture by

column chromatography. These were identical (mixed m.p. and i.r. spectra) with authentic samples.

A possible reaction mechanism is given in the Scheme.

(Received, 29th July 1974; Com. 960.)

¹ P. J. Garratt and K. P. C. Vollhardt, Chem. Comm., 1970, 109; J. Amer. Chem. Soc., 1972, 94, 7087.
² K. P. C. Vollhardt and R. G. Bergman, J. Amer. Chem. Soc., 1972, 94, 8950.
³ R. H. Martin, J. P. Van Trappen, N. Defay, and J. F. W. McOmie, Tetrahedron, 1964, 20, 2373; A. R. Katritzky and R. E. Reavill, Rec. Trav. chim., 1964, 83, 1230.
⁴ D. J. Bertelli, C. Golino, and D. L. Dreyer, J. Amer. Chem. Soc., 1964, 86, 3329.
⁵ D. J. Bertelli, T. G. Andrews, and P. O. Crews, J. Amer. Chem. Soc., 1969, 91, 5286.
⁶ G. Heyl, J. prakt. Chem., 1899, [2] 59, 453.
⁷ C. Courtot and C. Vignati, Compt. rend., 1927, 184, 1180; P. Chanussot, Anales Asoc. quim. Argentina, 1927, 15, 216.