
Synthesis of Condensed Thiophens *via* [2,3] and [3,3] Sigmatropic Rearrangements of Aryl Prop-2-ynyl Sulphoxides

By YASUO MAKISUMI* and SUSUMU TAKADA

(Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan)

Summary Condensed thiophens are obtained by heating aryl prop-2-ynyl sulphoxides in a suitable protic solvent via consecutive [2,3] and [3,3] sigmatropic rearrangements, ketolization, and $S_{\rm N}2'$ attack of the solvent molecule.

[3,3] SIGMATROPIC rearrangements have been frequently employed in syntheses e.g. the Fischer indole synthesis¹

using the phenylhydrazones (1; X = NH). Benzo[b]furans have been prepared analogously from the O-phenyloxime ethers² (1; X = O), but attempts to extend these

reactions to the preparation of benzo[b]thiophens from the aryl sulphenamides (1; X = S) have failed.^{2C,3} We now report a convenient synthesis of condensed thiophens by the thermal reaction of aryl prop-2-ynyl sulphoxides in a suitable protic solvent.

		TABLE		
Conversion of	prop-2-ynyl	sulphides into ocedure (vield	thiophens	by the
one mask procedure (fred /0)				
X	(3a) ^a	(3b) ^a (10a) ^b	(10b) ^b
PhS	93	87	67	81
EtO	76	78	58	85
но	76	83	67	72
AcO	54	56		
^a From (2).	^b From (8).			

The sulphoxides (2)[†] were prepared from the corresponding sulphides by periodate oxidation. When the sulphoxide (2a) was heated at 80° for 5 h in benzenethiol, the naphthothiophen (3a; X = PhS) was obtained in 60% yield. Thermal reaction of (2a) in ethanol or acetic acid also afforded the naphthothiophens (3a; X = EtO or AcO) as major products. But-2-ynyl 2-naphthyl sulphoxide (2b) was also transformed into the naphthothiophens (3b; X = PhS, EtO, and AcO) in 60-80% yield. These reactions are considered to involve : (i) [2,3] sigmatropic rearrangement of (2) to the allenyl sulphenates (4), (ii) [3,3] sigmatropic rearrangement of (4) to the $\alpha\beta$ -unsaturated carbonyl compounds (5), and (iii) ketolization to the hemithioacetal intermediates (6),⁴ which undergo $S_{N}2'$ attack by the solvent to the allyl alcohol (Scheme).

Heating the sulphoxides (2a, b) in dioxan at 100° for 2 h quantitatively afforded the hemithioacetals (6a, b) which were transformed into the naphthothiophens (3a, b) by treatment with protic solvents. Conversion of (6) into (3) is catalysed by a small amount of acid (e.g., TsOH). Synthesis of the naphthothiophens (3) from the sulphoxides (2) could thus be an efficient 'one-flask' procedure, in which a dioxan solution of (6) obtained by heating (2) in dioxan, was warmed with a suitable protic solvent and a catalyst (TsOH). By this method the phenyl prop-2-ynyl sulphoxides (8) afforded the corresponding benzo[b]thiophens (10) via the intermediates (9). The products are shown in the Table.

Conversely, thermal reaction of (2a, b) in basic media (e.g. dimethylaniline) at 80 °C for 2 h afforded the 1-formyl- and 1-acetyl-naphthothiophens (7a,b) in 72 and 83% yield, respectively, which could also be prepared by treatment of the intermediates (6a, b) with aqueous KOH.4

(Received, 15th July 1974; Com. 859.)

† The n.m.r. and i.r. spectra and elemental analyses of all new compounds were consistent with the structures assigned.

¹ For reviews on the Fischer indole synthesis, see B. Robinson, Chem. Rev., 1963, 63, 373; 1969, 69, 227.
² (a) T. Sheradsky, Tetrahedron Letters, 1966, 5225; (b) A. Mooradian, *ibid.*, 1967, 407; (c) D. Kaminsky, J. Shavel, Jr., and R. I. Meltzer, *ibid.*, p. 859; (d) A. Mooradian and P. E. Dupont, *ibid.*, p. 2867.
³ F. A. Davis and E. B. Skibo, J. Org. Chem., 1974, 39, 807.
⁴ Cf. K. C. Majumdar and B. S. Thyagarajan, J.C.S. Chem. Comm., 1972, 83.