Cobaloxime and DDT. X-Ray Crystal Structure of an Unexpected Vinyl-Cobalt(III) Complex

By REGINALD H. PRINCE, GEORGE M. SHELDRICK, DAVID A. STOTTER,*† and ROBIN TAYLOR (University Chemical Laboratory, Lensfield Road, Cambridge)

Summary The crystal structure of the product of the reaction between bis(dimethylglyoximato)pyridinecobalt-(I) and the insecticide 1,1-bis-(p-chlorophenyl)-2,2,2-trichloroethane (p,p'-DDT) shows the presence of a chlorovinyl group σ -bonded to cobalt.

WE have been studying the possible involvement of alkyl-cobalt species in the biological reactions of DDT.¹ Because of analogies between the chemistry of cobaloximes and cobalamins,² the reaction of the former with DDT, and the structure of the product, were of interest. Pyridinato-cobaloxime(I) was prepared in methanol by the published method,³ and treated *in situ* with 1 equiv. of p, p'-DDT. After warming to 40° for 3 h, a 55% yield of a yellow-orange solid had precipitated. Crystals of this compound were grown from methanol.[‡]

Crystal data: $C_{27}H_{27}N_5Cl_3O_4Co$ is orthorhombic, space group $Pn2_1a$; $a = 25\cdot50(2)$, $b = 23\cdot13(2)$, $c = 9\cdot728(7)$ Å;

 $D_{\rm m}$ (flotation) = 1.48; $D_{\rm c} = 1.507 \,{\rm g} \,{\rm cm}^{-3}$ for Z = 8. Intensity data were collected using an automated twocircle diffractometer (Mo- K_{α} radiation) and corrected for absorption. Data collected about two axes were merged to give 3545 unique observed reflexions. The structure was solved by interpretation of a multiple superposition Patterson minimum function and successive electron density syntheses. Anisotropic temperature factors were employed for cobalt and chlorine atoms only. All four crystallographically independent hydrogen-bonded hydrogen atoms were found in symmetrical O \cdots H \cdots O locations in a difference electron density map [mean O \cdots O $2\cdot 50(1)$ Å]. At the present stage of refinement the conventional R factor is 0.049.

The asymmetric unit contains two molecules, each with octahedral co-ordination of cobalt, which differ significantly only in the relative orientations of the aromatic rings and the effect this has on the equatorial plane. This probably

† Address correspondence to Department of Chemistry, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, Essex.

[‡] Satisfactory analyses were obtained for this compound.

assists the crystal packing of this bulky complex. Although several σ -bonded vinyl-Co^{III} complexes have been prepared

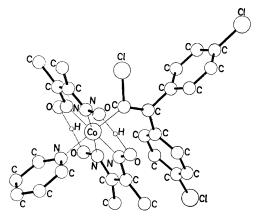


FIGURE. One molecule of the complex. Some average bond lengths and angles for the two crystallographically different molecules are: C=C 1.37(2), C-Cl(vinyl) 1.80(1), C-Cl(aromatic) 1.76(2), C-C(vinyl) 1.50(4), C-C(oxime) 1.43(2), C=N(oxime) 1.30(2), N=O 1.35(2), O \cdots O 2.50(1), Co-N(oxime) 1.88(1), Co-N(py) 2.04(1), Co-C 1.97(1) Å; Co-C=C 133.8(12), CI-C-Co $115 \cdot 0(5)$, Cl-C = C $110 \cdot 6(8)^{\circ}$.

by reactions of Co^I species with vinyl halides or acetylenes,⁴ no such compound has previously been produced from a fully saturated organic molecule. The C=C distance of 1.37(2) Å compares with the distances of 1.333(15) and 1.31(3) Å found in σ -vinyl complexes of Co^{III}bae⁵ and Co^{III}salen⁶ [bis(acetylacetone)- and bis(salicylaldehyde)ethylenedi-iminato dianions].

Since DDT itself is stable to base-induced elimination of HCl under the reaction conditions employed,⁷ this complex must have been produced by elimination of HCl from the first-formed product of $S_N 2$ attack by Co^I on C(2) of DDT. This elimination is driven by the conjugation in the product between the vinylic double bond and the benzene rings, and the Co-C bond is stabilised by the presence of the vinylic chlorine.8 In the light of this result, the mechanism suggested¹ for the formation of a previously reported cobalt-DDT product must be considered incorrect; however, an important new pathway for the chemical degradation of DDT has been established.

We thank the S.R.C. for support (D.A.S. and R.T.), and for providing the diffractometer.

(Received, 19th August 1974; Com. 1071.)

- ¹ R. H. Prince and D. A. Stotter, Nature, 1974, 249, 286.
- ² G. N. Schrauzer, Accounts Chem. Res., 1968, 1, 97; D. G. Brown, Progr. Inorg. Chem., 1973, 18, 177.
- ⁸ G. N. Schrauzer and R. J. Windgassen, J. Amer. Chem. Soc., 1966, 88, 3738.
- ⁴ J. M. Pratt and P. J. Craig, Adv. Organometallic Chem., 1973, 11, 332; D. Dodd and M. D. Johnson, J. Organometallic Chem., 1973, 52. İ.
- ⁶ S. Brückner, M. Calligaris, G. Nardin, and L. Randaccio, *Inorg. Chim. Acta*, 1968, 2, 416.
 ⁶ M. Calligaris, G. Nardin, and L. Randaccio, *J.C.S. Dalton*, 1972, 1433.
 ⁷ S. Smith and J. F. Parr, *J. Agr. Food Chem.*, 1972, 20, 839.
- ⁸ B. F. G. Johnson, J. Lewis, J. D. Jones, and K. A. Taylor, J.C.S. Dalton, 1974, 34.