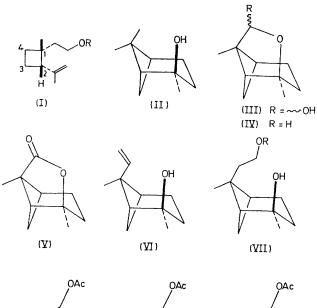
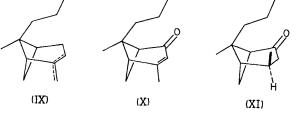
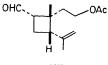
Synthesis of Optically Active Grandisol

By Peter D. Hobbs and Philip D. Magnus*

(Chemistry Department, Imperial College, South Kensington, London SW7 2AY)


Summary. (-)- β -Pinene is converted stepwise into (+)-(1R,2S)-1-methyl-1-(2-hydroxy)ethyl-2-isopropenyl-cyclobutane (grandisol) (I; R = H).


GRANDISOL (I; R = H) is the major component of the four synergistic compounds of the male boll weevil pheromone.¹ The synthesis of racemic grandisol (I; R = H) has been reported by a number of groups, all utilising a (2 + 2)cycloaddition to construct the cyclobutane ring.²


Our approach is to start from an optically active starting material containing a cyclobutane ring, namely (-)- β -pinene. (-)- β -Pinene was converted into pinan-2 β -ol³ (II) by standard procedures.⁴ Photolysis⁵ of the nitrite ester of (II) followed by pyrolysis of the initially formed nitroso-dimer gave a mixture of *syn*- and *anti*-hydroxy-oximes, which on hydrolysis (ether-acetone-2% aqueous

HCl) gave the lactol (III) (51%), m.p. $58-60^{\circ}$. The lactol (III) was also prepared from pinan- 2β -ol via the ether (IV).⁴ Oxidation of the ether (IV) with hydrated RuO₂ (1 mol)-KIO₄ (1 mol) in aqueous CCl₄ gave the lactone (V)⁴ (76% from pinan- 2β -ol), m.p. $37-38^{\circ}$. Reduction of the lactone (V) with Li(EtO)₃AlH at -20° gave the lactol (III) (97%). Whilst this route to the lactol (III) is longer the overall yield (74%) is higher.

The lactol (III) was treated with $CH_2 = PPh_3$ in Me_2SO to give the olefin (VI) (67%), m.p. $50 \cdot 5 - 51 \cdot 5^{\circ}$. Treatment of the olefin (VI) with bis(1-isopropylethyl)borane followed by oxidative work-up (H_2O_2 -NaOH) gave the diol (VII; R = H) (95%), m.p. 110-111°. Acetylation (Ac_2O -pyridine) of the diol (VII; R = H) gave the monoacetate (VII; R = Ac) (95%) which on treatment with POCl₃ in pyridine at 0° gave the olefin acetate (IX) (59%; 2:1 mixture of α - and β - isomers). Oxidation of (IX) with CrO_3 -pyridine

(9H, m), and 5.90 (2H, t, J 10 Hz). A 1% solution of the ketone (XI) in MeOH containing NaHCO₃ (1 mg/ml) was photolysed⁶ (Hanovia 500 W medium-pressure lamp) to give the aldehyde (XII)(60%), ν_{max} 1735, 1705, and 1645 cm⁻¹, τ , 8.58 (3H, s), 8.30 (3H, s), 8.07 (3H, s), 9.13-7.07 (6H, m), 6.08 (2H, m), 5.23br (1H, s), 5.08br (1H, s), and 0.28 (1H, d, J 3 Hz) (containing ca. 10% of a cyclobutene compound⁶). The aldehyde (XII), in refluxing CH_2Cl_2 , was treated with (PPh₃)₃RhCl (1.5 equiv.) to give grandisol acetate (I; R = Ac)², (75%), τ , 8·80 (3H, s), 8·33 (3H, s), 8.05 (3H, s), 7.45 (1H, t), 6.01 (2H, t, / 8 Hz), 5.38br (1H, s), and $5\cdot 18br$ (1H, s). Grandisol acetate (I; R = Ac) was reduced with LiAlH₄ to give grandisol (I; R = H), 8.82 (3H, s), 8·33 (3H, s), 8·28br (2H, s), 7·93 (1H, s, exchanged by D₂O), 7·48 (1H, t J 8 Hz), 6·46 (2H, t, J 7·5 Hz), 5·40br (1H, s), and 5.22br (1H, s).† Purification was achieved through the p-nitrobenzoate (I; $R = COC_{e}H_{a}NO_{2}-p$) (recryst. 5 times), m.p. 73-74°, hydrolysis (KOH-MeOH-H₂O) and distillation. A sample purified this way had $\alpha_{D}^{2\bar{1}.5} + 14.7^{\circ}$ (c, 1% in n-hexane), $\alpha_{D}^{25} + 12.7^{\circ}$ (c, 3% in n-hexane) $\alpha_{D}^{25} + 5.5$ (c, 3% in CHCl₃), $\alpha_{D}^{25} + 9.8^{\circ}$ (c, 3% in EtOH) (lit., $1+50 \pm 10^{\circ}$, measured on a crude sample). This value is exceptionally high when compared with other monoterpene alcohols.

(1:2) in CH_2Cl_2 gave the enone (X) (48%), ν_{max} 1750, 1690 cm⁻¹. Hydrogenation (20% Pd-C in EtOH) of the enone (X) gave the ketone (XI) (90%), ν_{max} 1750 and 1720 cm^-1, τ 8.77 (3H, J 10 Hz), 8.58 (3H, s), 7.92 (3H, s), 8.50–7.08

This particular synthesis offers the possibility of preparing analogues via Wittig reactions on the lactol (III). The unusual photochemical transformation $(XI) \rightarrow (XII)$, generating the isopropenyl group and exposing the cyclobutane ring with the quaternary centre in the correct absolute configuration is a novel and quite general reaction for these particular pinane derivatives.

All new compounds gave satisfactory spectral and microanalytical data.

(XII)

(Received, 8th August 1974; Com. 1019.)

 \dagger Comparison with spectral data kindly supplied by Dr. C. A. Henrick (Zöecon) of (\pm)-grandisol showed them to be identical (i.r. and n.m.r.).

‡ All formulae are written in their correct absolute configuration.4c

¹ J. H. Tumlinson, D. D. Hardee, R. C. Gueldner, A. C. Thompson, P. A. Hedin, and J. P. Minyard, Science, 1969, 166, 1010.

² (a) J. H. Tumlinson, R. C. Gueldner, D. D. Hardee, A. C. Thompson, P. A. Hedin, and J. P. Minyard, J. Org. Chem., 1971, 36, 2616; (b) R. L. Zurfluh, L. L. Durham, V. L. Spain, and J. B. Siddall, J. Amer. Chem. Soc., 1970, 92, 425; (c) R. C. Gueldner, A. C. Thompson, and P. A. Hedin, J. Org. Chem., 1972, 37, 1854.

³ (a) W. D. Burrows and R. H. Eastman, J. Amer. Chem. Soc., 1959, 81, 245; (b) W. Huckel and E. Gelchscheimer, Annalen, 1959, 625, 12. ⁴ (a) T. W. Gibson and W. F. Erman, J. Amer. Chem. Soc., 1969, 91, 4771; (b) A. G. Hortmann and R. E. Youngstrom, J. Org.

Chem., 1969, 34, 3392; (c) N. Bosworth and P. D. Magnus, J.C.S. Perkin I, 1972, 943. ⁵ D. H. R. Barton, J. M. Beaton, L. E. Geller, and M. M. Pechet, J. Amer. Chem. Soc., 1960, 82, 2640. ⁶ (a) A. G. Fallis, Tetrahedron Letters, 1972, 4573; (b) T. Matsui, *ibid.*, 1967, 3761; (c) G. W. Schaffer, A. B. Doerr, and K. L. Purzycki,

J. Org. Chem., 1972, 37, 25.