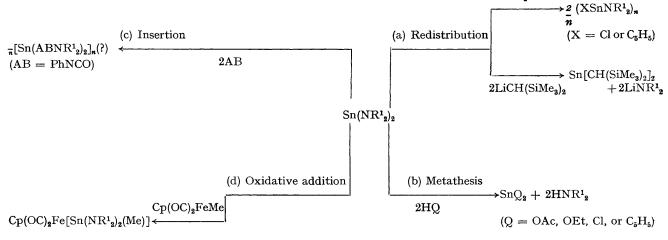
Monomeric, Volatile Bivalent Amides of Group IVB Elements, $M(NR_2)_2$ and $M(NR_1R_2)_2$ (M=Ge, Sn, or Pb; R¹=Me₃Si, R²=Me₃C)

By DAVID H. HARRIS and MICHAEL F. LAPPERT* (School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary The reactions of $SnCl_2$, $PbCl_2$, or $GeCl_2$, dioxan with $LiNR^1_2$, OEt_2 or $LiNR^1R^2$, OEt_2 in Et_2O at 0° yield the stable, monomeric, diamagnetic, coloured, volatile, hydrocarbon-soluble title compounds which are highly reactive.

WE report the preparation and characterisation of unusual stable, monomeric, diamagnetic, coloured, volatile, hydrocarbon-soluble, dialkylamides (I) and (II) (M = Ge, Sn, or Pb) of the Group IVB elements (see Table).


$M[N(SiMe_3)_2]_2$	$M[N(SiMe_3)(CMe_3)]_2$	
(I)	(II)	

These compounds represent rare examples of bivalent two-co-ordinate Group IVB complexes MX_2 which are monomeric and long-lived under ambient conditions. For

 $(SiMe_3)_2]_2$ isoelectronic with the Sn and Pb amides (I). More complicated examples refer to a (presumed monomeric) tin(II) carbamate³ and a tin(II) 1,2-diazole derivative which readily (hours) polymerises.⁴ The use of Me₃Si(Me₃C)N⁻ as a ligand has not hitherto been described but (Me₃Si)₂N⁻ has been employed, especially in transition-metal chemistry.⁵

The reaction of MCl_2 (M = Sn or Pb) or $GeCl_2$, dioxan with $LiN(SiMe_3)_2$, OEt_2 or $LiN(SiMe_3)(CMe_3)$, OEt_2 in Et_2O at 0° gives yellow crystalline $M(NR^{1}_{2})_2$ (M = Ge, Sn, or Pb; $R^{1} = Me_3Si$) or orange to red liquids $M(NR^{1}R^{2})_2$ ($R^{2} = Me_3C$) in high yield (Table). All complexes are analytically pure, show monomeric molecular ions in the mass spectra (20 and 70 eV), sharp singlets (Me_3C or Me_3Si) in the ¹H n.m.r. spectrum (C_6H_6), and no e.s.r. signal in hexane, consistent with a singlet metal(II) formulation.

A probable intermediate in the synthesis of these amides

SCHEME. Cp = cyclopentadienyl.

germanium, the only other case is that of the cyclopentadienide ($X = C_5H_5$) which, however, readily (hours) polymerises.¹ The corresponding polymerisable Sn and Pb species M'(C_5H_5)₂ are known as well as the dialkyls² M'[CH- is $[CIMNR_{2}]_{n}$ or $[CIM(NR_{1}R_{2})]_{m}$; white crystalline $[CISnN-(SiMe_{3})_{2}]_{n}$ was obtained from an equimolar reaction between (i) SnCl₂ and LiNR₂,OEt₂ or (ii) SnCl₂ and Sn(NR₂)₂. Another redistribution reaction of type (ii) yielded (C₅H₅)-

 $SnNR_{2}^{1}$, from $Sn(NR_{2}^{1})_{2}$ and $(C_{5}H_{5})_{2}Sn$, still containing a delocalised cyclopentadienyl $[{}^{2}J({}^{119}Sn-{}^{1}H) = 12 \cdot 0 Hz]$. The metal(II) diamides are highly reactive. We currently recognise the four classes of reactions illustrated as (a)--(d)

TABLE

IABLE			
			$He^{I}PE$
	M.p.ª	Yield	[First I.P.
Colour	°Ĉ	(%)	_ (eV)]
. Yellow ^e	32 - 33	67	7.72
. Yellow ^e	37-38	79	7.75
. Yellow ^e	37-38	69	7.92
. Orange ^e	21 - 22	76	7.26
Red	18-19	80	7.25
. Red	15 - 16	70	7.18
. White	ca. 150	51	
	(decomp	.)	
	Colour Yellow ^e Yellow ^e Orange ^e Red Red	M.p. ^d Colour °C Yellow ^e 32—33 Yellow ^e 37—38 Yellow ^e 37—38 Orange ^e 21—22 Red 18—19 Red 15—16 White ca. 150	M.p. ^d Yield Colour °C (%) Yellow ^e 32—33 67 Yellow ^e 37—38 79 Yellow ^e 37—38 69 Orange ^e 21—22 76 Red 18—19 80 Red 15—16 70

^a M, 429 (cryoscopy in C₆H₆) (required, 393). ^b M, 443 (cryoscopy in C₆H₆) (required, 439). ^c λ_{max} (n-C₆H₁₄) 487 (ϵ ca. 40), 389 (ϵ ca. 3100), 287 (ϵ ca. 4600), 230 (ϵ ca. 23,000) nm. ^d All volatile at ca. 60° and 10⁻³ mmHg. ^e Compounds are thermochromic, becoming redder on heating; redness increases in the series Ge < Sn < Pb.

in the Scheme for $Sn(NR_{2}^{1})_{2}$, as well as (e) photochemical disproportionation $[- \rightarrow Sn(NR^{1}_{2)_{3}}].^{6}$ To date we have

not succeeded in showing that the amides (I) possess Lewis base properties (associated with the metal);⁷ for example, whereas $Sn[CH(SiMe_3)_2]_2$ with Mo(CO)₆ yields $[(Me_3Si)_2-CH]_2SnMo(CO)_5$,² Sn(NR¹₂)₂ does not react with (norborna-Consistent with this, HeI photoelectron diene) $Mo(CO)_4$. (PE) data (see Table) show that the metal s^2 lone pair of electrons is more tightly bound in (I) than in (II), or in the Sn or Pb alkyls isoelectronic with (I).²

We thank the U.S. Army (European Office) for their support, Mr. G. J. Sharp (PE), and Mr. A. Greenway (mass) for spectra, and (added in proof) Professor J. J. Zuckerman for informing us that he and C. Schaeffer have prepared an Sn^{II} amide which they formulate as the dimer $[Sn{N(SiMe_3)_2]_2}]_2$

(Received, 13th August 1974; Com. 1040.)

¹ M. D. Curtis and J. V. Scibelli, J. Amer. Chem. Soc., 1973, 95, 924.

- ² P. J. Davidson and M. F. Lappert, J.C.S. Chem. Comm., 1973, 317.

- ¹ D. Barrison and J. J. Zuckerman, Inorg. Nuclear Chem. Letters, 1969, 5, 545.
 ⁴ P. G. Harrison and S. R. Stobart, J.C.S. Dalton, 1973, 940.
 ⁵ Cf. D. C. Bradley, Adv. Inorg. Chem. Radiochem., 1972, 15, 259.
 ⁶ J. D. Cotton, C. S. Cundy, D. H. Harris, A. Hudson, M. F. Lappert, and P. W. Lednor, J.C.S. Chem. Comm., 1974, 651.
 ⁷ J. D. Cotton, P. J. Davidson, D. E. Goldberg, M. F. Lappert, and K. M. Thomas, preceding communication.