
General Synthesis of Didehydroamino-acids and Peptides

By DANIEL H. RICH,* J. TAM, P. MATHIAPARANAM, J. A. GRANT, and C. MABUNI (School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53706)

Summary Thermolysis of β -alkylsulphinyl derivatives of amino-acids and peptides gives $\alpha\beta$ -didehydroamino-acids and peptides.

SEVERAL methods^{1,2} for the synthesis of the $\alpha\beta$ -didehydroamino-acid unit have been developed for use in studies of the role of didehydropeptides in the biosynthesis³ and mechanism of action⁴ of microbial peptides. Additional synthetic methods are needed to prepare complex didehydropeptides containing hydroxy-amino-acids or peptide bonds susceptible to base-catalysed rearrangements. We report here the synthesis of didehydropeptides by thermolysis of β -alkylsulphinyl derivatives of amino-acids (Scheme).

Heating the sulphoxides (1)—(8) in refluxing xylene under nitrogen for 6—10 h gave the corresponding didehydro-compounds (10)—(17) which were isolated in good yield after chromatography on silica gel (Table). Elimination of the sulphoxide group was facilitated by replacement of the amide hydrogen of the sulphoxide-containing aminoacid with a methyl group. The tertiary amide sulphoxide (9) was transformed in high yield into the didehydropeptide (18) within 48 h at room temperature in chloroform.

Ionization of the α -proton in acylated secondary aminoacids has been reported to be suppressed by competing ionization of the more acidic amide N-H bond.5

The sulphoxides (1)—(9) were prepared by oxidation of the corresponding sulphides with sodium periodate in which after treatment with CF₃CO₂H followed by neutralization with Et_3N and reaction with p-nitrophenyl Nbenzyloxycarbonylglycinate gave the dipeptide sulphoxide (7) in 70% yield (Scheme).

This work was supported by grants from the National

TABLE[†]

	Sulphoxide		Didehydropeptide	Yield (%)
(1)	Boc-Cys(OBzl)-OMe	(10)	$Boc-\Delta-Ala-OMe$	85
(2)	Boc-But(3SOBzl)-OMea,b	(11)	Boc-∆But-OMe ^{b,c}	81
(3)	Boc-Val(3SOBzl)-OMe	(12)	Boc- Δ Val-OMe	89
(4)	Boc-Ala-Phe(3SOBzl)-OMea	(13)	$Boc-Ala-\Delta Phe-OMe^{c}$	78
(5)	Z-Cys(OBzl)-Gly-OEt	(14)	Z-ΔAla-Gly-OEt	75
(6)	Ac-Gly-Cys(OBzl)-OMe	(15)	Ac-Gly-ΔAla-OMe	80
(7)	Z-Gly-Cys(OBzl)-OMe	(16)	Z-Gly-ΔAla-OMe	60
(8)	Boc-MeAla-Leu-Phe(3SOBzl)-Gly-OMea	(17)	Boc-MeAla-Leu-∆Phe-Gly-OEt ^o	65
(9)	Boc-MePhe(3SOBzl)-Gly-MeAla-Leu-OMea	(18)	Boc-NMe∆Phe-Gly-MeAla-Leu-OMe	95

^a The β -S-benzylamino-acid used to prepare the sulphoxides was a mixture of both *threo*- and *erythro*-diastereoisomers. ^b But = β -methylalanine. • The product obtained was a mixture of E and Z isomers.

aqueous methanol or with m-chloroperbenzoic acid in chloroform. Peptide sulphoxides can also be synthesized stepwise using preformed protected β -S-alkylsulphinyl derivatives of amino-acid and peptides. E.g., oxidation of the β -S-benzylcysteinate (1) gave the sulphoxide (19)

Institute of General Medical Sciences, the Petroleum Research Foundation, and the Graduate School of the Univer sity of Wisconsin.

(Received, 29th July 1974; Com. 962.)

† Satisfactory microanalysis, t.l.c., n.m.r., and i.r. data were obtained.

¹ E. Rothstein, J. Chem. Soc., 1949, 1968.

- ² I. Rothstein, J. Chem. Soc., 1949, 1908.
 ³ I. Photaki, J. Amer. Chem. Soc., 1963, 85, 1123.
 ³ E. P. Abraham and G. G. F. Newton, Biochem. J., 1961, 79, 377; B. W. Bycroft, Nature, 1969, 224, 595.
 ⁴ E. Gross and J. L. Morell, J. Amer. Chem. Soc., 1971, 93, 4635.
 ⁵ J. R. McDermott and N. L. Benoiton, Canad. J. Chem., 1973, 51, 2555.